“He who seeks for methods without having a definite problem in mind seeks for the most part in vain.”
David Hilbert
Webpage last updated November 21, 2022
- Stochastic dynamics and stochastic partial differential equations
- (Stochastic) variational calculus and infinite dimensional optimization
- Time-evolution models from biology, ecology and neuroscience involving randomness
- Singular phenomena, mathematical perturbation theory and modeling of critical physical systems
- Asymptotic invariance properties, ergodicity and uniqueness questions of complex stochastic systems
- Theoretical approximation theory and variational convergence
Submitted for peer review
-
- J. M. Tölle (with D. Blömker). Singular limits for stochastic equations. Preprint, submitted (2022), 23 pp., arXiv:2204.09545.
Abstract.
show abstractWe study singular limits of stochastic evolution equations in the interplay of disappearing strength of the noise and increasing roughness of the noise, so that the noise in the limit would be too rough to define a solution to the limiting equations. Simultaneously, the limit is singular in the sense that the leading order differential operator may vanish. Although the noise is disappearing in the limit, additional deterministic terms appear due to renormalization effects.
We give an abstract framework for the main error estimates, that first reduce to bounds on a residual and in a second step to bounds on the stochastic convolution. Moreover, we apply it to a singularly regularized Allen-Cahn equation and the Cahn-Hilliard/Allen-Cahn homotopy.
- J. M. Tölle (with F. Seib and W. Stannat). Stability and moment estimates for the stochastic singular Φ-Laplace equation. Preprint, submitted (2022), 24 pp., arXiv:2103.03194.
Abstract.
show abstractWe study stability, long-time behavior and moment estimates for stochastic evolution equations with additive Wiener noise and with singular drift given by a divergence type quasilinear diffusion operator which may not necessarily exhibit a homogeneous diffusivity. Our results cover the singular stochastic p-Laplace equations and, more generally, singular stochastic Φ-Laplace equations with zero Dirichlet boundary conditions. We obtain improved moment estimates and quantitative convergence rates of the ergodic semigroup to the unique invariant measure, classified in a systematic way according to the degree of local degeneracy of the potential at the origin. We obtain new concentration results for the invariant measure and establish maximal dissipativity of the associated Kolmogorov operator. In particular, we recover the results for the curve shortening flow in the plane by Es-Sarhir, von Renesse and Stannat, NoDEA 16(9), 2012, and improve the results by Liu and Tölle, ECP 16, 2011.
- J. M. Tölle (with E. Hausenblas). The stochastic Klausmeier system and a stochastic Schauder-Tychonoff type theorem. Preprint, submitted (2021), 52 pp., arXiv:1912.00996.
Abstract.
show abstractOn the one hand, we investigate the existence and pathwise uniqueness of a nonnegative martingale solution to the stochastic evolution system of nonlinear advection-diffusion equations proposed by Klausmeier with Gaussian multiplicative noise. On the other hand, we present and verify a general stochastic version of the Schauder-Tychonoff fixed point theorem, as its application is an essential step for showing existence of the solution to the stochastic Klausmeier system. The analysis of the system is based both on variational and semigroup techniques. We also discuss additional regularity properties of the solution.
Accepted for journal publication
- J. M. Tölle (with M. Hinz and L. Viitasaari). Variability of paths and differential equations with BV-coefficients. Accepted for publication in Annales de l’Institut Henri Poincaré – Probabilités et Statistiques (2022), 46 pp., arXiv:2003.11698.
Abstract.
show abstractWe define compositions φ(X) of Hölder paths X in ℝn and functions of bounded variation φ under a relative condition involving the path and the gradient measure of φ. We show the existence and properties of generalized Lebesgue-Stieltjes integrals of compositions φ(X) with respect to a given Hölder path Y. These results are then used, together with Doss’ transform, to obtain existence and, in a certain sense, uniqueness results for differential equations in ℝn driven by Hölder paths and involving coefficients of bounded variation. Examples include equations with discontinuous coefficients driven by paths of two-dimensional fractional Brownian motions.
Journal Publications
-
-
- J. M. Tölle (with M. Hinz and L. Viitasaari). Sobolev regularity of occupation measures and paths, variability and compositions. Electronic Journal of Probability 27 (2022), no. 73, 1–29, https://doi.org/10.1214/22-EJP797, preprint available at arXiv:2105.06249.
- J. M. Tölle. Stochastic evolution equations with singular drift and gradient noise via curvature and commutation conditions. Stochastic Processes and their Applications, 130 (2020), no. 5, 3220–3248, https://doi.org/10.1016/j.spa.2019.09.011, preprint available at arXiv:1803.07005.
- J. M. Tölle (with C. Kuehn). A gradient flow formulation for the stochastic Amari neural field model. Journal of Mathematical Biology 79 (2019), no. 4, 1227–1252, https://doi.org/10.1007/s00285-019-01393-w, preprint available at arXiv:1807.02575.
- J. M. Tölle (with B. Gess). Ergodicity and local limits for stochastic local and nonlocal p-Laplace equations. SIAM J. Math. Anal. 48 (2016), no. 6, 4094–4125, http://dx.doi.org/10.1137/15M1049774, preprint available at arXiv:1507.04545.
- J. M. Tölle (with I. Ciotir). Nonlinear stochastic partial differential equations with singular diffusivity and gradient Stratonovich noise. J. Funct. Anal. 271 (2016), no. 7, 1764–1792, http://dx.doi.org/10.1016/j.jfa.2016.05.013, preprint available at arXiv:1507.02576.
- J. M. Tölle (with B. Gess). Stability of solutions to stochastic partial differential equations. J. Differential Equations 260 (2016), no. 6, 4973–5025, http://dx.doi.org/10.1016/j.jde.2015.11.039, preprint available at arXiv:1506.01230.
- J. M. Tölle (with B. Gess). Multi-valued, singular stochastic evolution inclusions. J. Math. Pures Appl. 101 (2014), no. 6, 789–827, http://dx.doi.org/10.1016/j.matpur.2013.10.004, preprint available at arXiv:1112.5672.
- J. M. Tölle (with A. Es-Sarhir, M. Scheutzow and O. van Gaans). Invariant measures for monotone SPDEs with multiplicative noise term. Appl. Math. Optim. 68 (2013), no. 2, 275–287, http://dx.doi.org/10.1007/s00245-013-9206-4, preprint available at arXiv:0910.0960.
- J. M. Tölle. Uniqueness of weighted Sobolev spaces with weakly differentiable weights. J. Funct. Anal. 263 (2012), no. 10, 3195–3223, http://dx.doi.org/10.1016/j.jfa.2012.08.002, preprint available at arXiv:1110.2888.
- J. M. Tölle (with I. Ciotir). Convergence of invariant measures for singular stochastic diffusion equations. Stochastic Process. Appl. 122 (2012), no. 4, 1998–2017, http://dx.doi.org/10.1016/j.spa.2011.11.011, preprint available at arXiv:1201.2839.
- J. M. Tölle (with M.-K. von Renesse). On an EVI curve characterization of Hilbert spaces. J. Math. Anal. Appl. 385 (2012), 589–598, http://dx.doi.org/10.1016/j.jmaa.2011.06.080.
- J. M. Tölle (with W. Liu). Existence and uniqueness of invariant measures for stochastic evolution equations with weakly dissipative drifts. Electr. Comm. Probab. 16 (2011), 447–457, https://doi.org/10.1214/ECP.v16-1643, preprint available at arXiv:1109.2437.
-
Published in peer reviewed proceedings
-
-
- J. M. Tölle. Estimates for nonlinear stochastic partial differential equations with gradient noise via Dirichlet forms. In: Eberle A., Grothaus M., Hoh W., Kassmann M., Stannat W., Trutnau G. (eds) Stochastic Partial Differential Equations and Related Fields. SPDERF 2016. Springer Proceedings in Mathematics & Statistics, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-319-74929-7_14.
-
Corrigenda / Addenda
-
-
- J. M. Tölle (with I. Ciotir). Corrigendum to “Convergence of invariant measures for singular stochastic diffusion equations” [Stochastic Process. Appl. 122 (2012) 1998–2017.] Stochastic Process. Appl. 123 (2013), no. 3, 1178–1181, http://dx.doi.org/10.1016/j.spa.2012.10.009, preprint available at arXiv:1211.4404.
-
Working papers
-
-
- J. M. Tölle (with P. Beissner). A compact topology for σ-algebra convergence. Working paper, (2018), 23 pp., arXiv:1802.05920.
- J. M. Tölle. Convergence of solutions to the p-Laplace evolution equation as p goes to 1. Preprint, http://arxiv.org/abs/1103.0229v2, 2011, 11 pp.
-
Theses
-
-
- J. M. Tölle. Stochastic partial differential equations with singular drift. Habilitation thesis, Universität Augsburg, 2019, 232 pp, https://opus.bibliothek.uni-augsburg.de/opus4/84117.
- J. M. Tölle. Variational convergence of nonlinear partial differential operators on varying Banach spaces. Dissertation, Universität Bielefeld, published online on BieSOn, Universitätsbibliothek Bielefeld, urn:nbn:de:hbz:361-16758, 2010, 250 pp, pdf.
- J. M. Tölle. Convergence of non-symmetric forms with changing reference measures. Diploma thesis, Universität Bielefeld, BiBoS-Preprint E06-09-234, http://www.math.uni-bielefeld.de/~bibos/preprints/E06-09-234.pdf, 2006, 81 pp.
-
(in chronological order – most recent first)
- Dirk Blömker
- Florian Seib
- Wilhelm Stannat
- Michael Hinz
- Lauri Viitasaari
- Erika Hausenblas
- Christian Kuehn
- Patrick Beissner
- Abdelhadi Es-Sarhir
- Michael Scheutzow
- Onno van Gaans
- Benjamin Gess
- Max-K. von Renesse
- Wei Liu
- Ioana Ciotir
Erdős number: 3
P. Erdős — C. J. Colbourn — M. Scheutzow — J. M. Tölle