Unless otherwise noted, all picture and video content on this website: Copyright © 2010–2020 by Jonas Tölle. All rights reserved.


Home Research

“He who seeks for methods without having a definite problem in mind seeks for the most part in vain.” (David Hilbert)

Scientific Interests

  • stochastic partial differential equations
  • (stochastic) variational calculus
  • singular and degenerate stochastic diffusion equations in Hilbert space
  • nonlocal and local nonlinear stochastic evolution equations
  • linear growth functionals and variational convergence
  • ergodic theory and invariant distributions
  • Dirichlet forms and their geometry
  • Models from biology, ecology and neuroscience


Google Scholar, arXiv, Orcid, ResearcherID.

List of Publications

for Jonas M. Tölle

updated March 28, 2020
Erdős number: 3
P. Erdős — C. J. Colbourn — M. Scheutzow — J. M. Tölle

Submitted for peer review

  1. J. M. Tölle (with M. Hinz and L. Viitasaari). Variability of paths and differential equations with BV-coefficients. Preprint, submitted (2020), 68 pp., arXiv:2003.11698.


  2. J. M. Tölle (with E. Hausenblas). The stochastic Klausmeier system and a stochastic Schauder-Tychonoff type theorem. Preprint, submitted (2019), 27 pp., arXiv:1912.00996.


Journal Publications

  1. J. M. Tölle. Stochastic evolution equations with singular drift and gradient noise via curvature and commutation conditions. Stochastic Processes and their Applications, 130 (2020), no. 5, 3220–3248, https://doi.org/10.1016/j.spa.2019.09.011, preprint available at arXiv:1803.07005.
  2. J. M. Tölle (with C. Kuehn). A gradient flow formulation for the stochastic Amari neural field model. Journal of Mathematical Biology, 79 (2019), no. 4, 1227–1252, https://doi.org/10.1007/s00285-019-01393-w, preprint available at arXiv:1807.02575.
  3. J. M. Tölle (with B. Gess). Ergodicity and local limits for stochastic local and nonlocal p-Laplace equations. SIAM J. Math. Anal. 48 (2016), no. 6, 4094–4125, http://dx.doi.org/10.1137/15M1049774, preprint available at arXiv:1507.04545.
  4. J. M. Tölle (with I. Ciotir). Nonlinear stochastic partial differential equations with singular diffusivity and gradient Stratonovich noise. J. Funct. Anal. 271 (2016), no. 7, 1764–1792, http://dx.doi.org/10.1016/j.jfa.2016.05.013, preprint available at arXiv:1507.02576.
  5. J. M. Tölle (with B. Gess). Stability of solutions to stochastic partial differential equations. J. Differential Equations 260 (2016), no. 6, 4973–5025, http://dx.doi.org/10.1016/j.jde.2015.11.039, preprint available at arXiv:1506.01230.
  6. J. M. Tölle (with B. Gess). Multi-valued, singular stochastic evolution inclusions. J. Math. Pures Appl. 101 (2014), no. 6, 789–827, http://dx.doi.org/10.1016/j.matpur.2013.10.004, preprint available at arXiv:1112.5672.
  7. J. M. Tölle (with A. Es-Sarhir, M. Scheutzow and O. van Gaans). Invariant measures for monotone SPDEs with multiplicative noise term. Appl. Math. Optim. 68 (2013), no. 2, 275–287, http://dx.doi.org/10.1007/s00245-013-9206-4, preprint available at arXiv:0910.0960.
  8. J. M. Tölle (with I. Ciotir). Corrigendum to “Convergence of invariant measures for singular stochastic diffusion equations” [Stochastic Process. Appl. 122 (2012) 1998–2017.] Stochastic Process. Appl. 123 (2013), no. 3, 1178–1181, http://dx.doi.org/10.1016/j.spa.2012.10.009, preprint available at arXiv:1211.4404.
  9. J. M. Tölle. Uniqueness of weighted Sobolev spaces with weakly differentiable weights. J. Funct. Anal. 263 (2012), no. 10, 3195–3223, http://dx.doi.org/10.1016/j.jfa.2012.08.002, preprint available at arXiv:1110.2888.
  10. J. M. Tölle (with I. Ciotir). Convergence of invariant measures for singular stochastic diffusion equations. Stochastic Process. Appl. 122 (2012), no. 4, 1998–2017, http://dx.doi.org/10.1016/j.spa.2011.11.011, preprint available at arXiv:1201.2839.
  11. J. M. Tölle (with M.-K. von Renesse). On an EVI curve characterization of Hilbert spaces. J. Math. Anal. Appl. 385 (2012), 589–598, http://dx.doi.org/10.1016/j.jmaa.2011.06.080.
  12. J. M. Tölle (with W. Liu). Existence and uniqueness of invariant measures for stochastic evolution equations with weakly dissipative drifts. Electr. Comm. Probab. 16 (2011), 447–457, https://doi.org/10.1214/ECP.v16-1643, preprint available at arXiv:1109.2437.

Published in peer reviewed proceedings

  1. J. M. Tölle. Estimates for nonlinear stochastic partial differential equations with gradient noise via Dirichlet forms. In: Eberle A., Grothaus M., Hoh W., Kassmann M., Stannat W., Trutnau G. (eds) Stochastic Partial Differential Equations and Related Fields. SPDERF 2016. Springer Proceedings in Mathematics & Statistics, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-319-74929-7_14.

Other works

  1. J. M. Tölle (with P. Beissner). A compact topology for σ-algebra convergence. Working paper, (2018), 23 pp., arXiv:1802.05920.
  2. J. M. Tölle. Convergence of solutions to the p-Laplace evolution equation as p goes to 1. Preprint, http://arxiv.org/abs/1103.0229v2, 2011, 11 pp.


  1. J. M. Tölle. Stochastic partial differential equations with singular drift. Habilitation thesis, Universität Augsburg, 2019, 232 pp.
  2. J. M. Tölle. Variational convergence of nonlinear partial differential operators on varying Banach spaces. Dissertation, Universität Bielefeld, published online on BieSOn, Universitätsbibliothek Bielefeld, urn:nbn:de:hbz:361-16758, 2010, 250 pp, pdf.
  3. J. M. Tölle. Convergence of non-symmetric forms with changing reference measures. Diploma thesis, Universität Bielefeld, BiBoS-Preprint E06-09-234, http://www.math.uni-bielefeld.de/~bibos/preprints/E06-09-234.pdf, 2006, 81 pp.