Jonas Tölle

(Universität Augsburg)

joint work with

Patrick Beissner (HU Berlin, ANU)

13th German Probability and Statistics Days

Uni Freiburg

February 27, 2018

Contents

1 Convergence of σ -algebras

- Example
- Metrizability
- Properties

2 Convergence in L^2 -bundles

- Strong convergence
- Weak convergence

3 Main result

Steps of the proof

Convergence of σ -algebras

1 Convergence of σ -algebras

Setup

$(\Omega, \mathcal{F}, \mathbb{P})$	separable probability space, $*$
\mathcal{N}	$\sigma ext{-ideal}$ of $\mathbb P ext{-zero}$ sets in $\mathcal F$,
\mathbb{F}	collection of sub- σ -algebras of ${\mathcal F}$,
\mathbb{F}^*	All σ -algebras of the type $\mathcal{A} \lor \mathcal{N}$, $\mathcal{A} \in \mathbb{F}$,
$\ \cdot\ _{p} := \ \cdot\ _{L^{p}(\mathcal{F})}, \ p \in [1,\infty].$	

 $\langle f, g \rangle := \mathbb{E}[fg]$ for $f, g \in L^1(\mathcal{F})$, whenever $f \cdot g \in L^1(\mathcal{F})$.

 $^*(\Omega, \mathcal{F}, \mathbb{P})$ separable iff $L^2(\Omega, \mathcal{F}, \mathbb{P})$ separable as a Hilbert space.

We do not assume that \mathcal{F} is countably generated!

The set of sub- σ -algebras is a compact metric space. — Convergence of σ -algebras

Recall

$$\bigwedge_{i\in I}\mathcal{B}_i:=\bigcap_{i\in I}\mathcal{B}_i$$
 "meet"

$$\bigvee_{i\in I} \mathcal{B}_i := \sigma(\bigcup_{i\in I} \mathcal{B}_i)$$
 "join"

Definition

A subset $\mathcal{N} \subset \mathcal{F}$ is called σ -ideal, if

1 $\emptyset \in \mathcal{N}$,

2 For $A \in \mathcal{N}$ and $B \in \mathcal{F}$ with $B \subset A$, it follows that $B \in \mathcal{N}$.

3 $A_n \in \mathcal{N}, n \in \mathbb{N}$ implies that $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{N}$.

The set of sub- σ -algebras is a compact metric space. — Convergence of σ -algebras

Setup

$(\Omega, \mathcal{F}, \mathbb{P})$	separable probability space,
\mathcal{N}	$\sigma ext{-ideal}$ of $\mathbb P ext{-zero}$ sets in $\mathcal F$,
\mathbb{F}	collection of sub- σ -algebras of ${\cal F}$,
\mathbb{F}^*	All σ -algebras of the type $\mathcal{A} \lor \mathcal{N}$, $\mathcal{A} \in \mathbb{F}$,
$\ \cdot\ _{p} := \ \cdot\ _{L^{p}(\mathcal{F})}, \ p \in [1,\infty],$	

 $\langle f, g \rangle := \mathbb{E}[fg] \text{ for } f, g \in L^1(\mathcal{F}), \text{ whenever } f \cdot g \in L^1(\mathcal{F}).$

Modes of convergence (of σ -algebras)

Let $\mathcal{B}_n, \mathcal{B} \in \mathbb{F}^*$, $n \in \mathbb{N}$.

Let $P_{\mathcal{A}}(f) := \mathbb{E}[f|\mathcal{A}], f \in L^1(\mathcal{F}), \mathcal{A} \in \mathbb{F}^*.$

Skorohod J₁-convergence Strong convergence L²-varying convergence Hausdorff convergence Set-theoretic convergence Almost-sure convergence Monotone convergence Operator-norm convergence
$$\begin{split} &P_{\mathcal{B}_n} 1_A \to 1_A \text{ in } \mathbb{P}\text{-probability for every } A \in \mathcal{B}, \\ &P_{\mathcal{B}_n} 1_A \to P_{\mathcal{B}} 1_A \text{ in } \mathbb{P}\text{-probability for every } A \in \mathcal{F}, \\ &\|P_{\mathcal{B}_n} f\|_2 \to \|P_{\mathcal{B}} f\|_2 \text{ for every } f \in L^2(\mathcal{F}), \\ &[\text{sup}_{A_n \in \mathcal{B}_n} \inf_{B \in \mathcal{B}} \mathbb{P}(A_n \Delta B) + \sup_{A \in \mathcal{B}} \inf_{B_n \in \mathcal{B}_n} \mathbb{P}(A \Delta B_n)] \to 0, ^{\dagger} \\ &\lim \inf_{B} B_n := \bigvee_{n \ge 1} \bigcap_{k \ge n} \mathcal{B}_k = \mathcal{B} = \bigcap_{n \ge 1} \bigvee_{k \ge n} \mathcal{B}_k = : \limsup_{B \in \mathcal{B}} \mathcal{B}_n, \\ &P_{\mathcal{B}_n} f \to P_{\mathcal{B}} f \mathbb{P}\text{-a.s. for any } f \in L^1(\mathcal{F}), \\ &\mathcal{B}_n \uparrow \bigvee_{n \ge 1} \mathcal{B}_n = \mathcal{B} \text{ or } \mathcal{B}_n \downarrow \bigcap_{n \ge 1} \mathcal{B}_n = \mathcal{B} \\ &\|P_{\mathcal{B}_n} - P_{\mathcal{B}}\|_{L(L^2(\mathcal{F}), L^2(\mathcal{F}))} \to 0. \end{split}$$

[†] $A\Delta B := (A \cup B) \setminus (A \cap B)$, "symmetric difference"

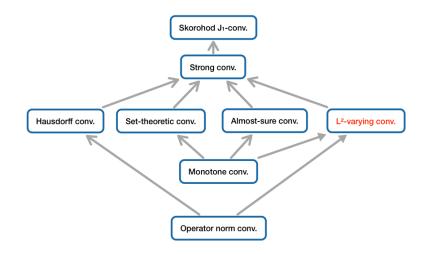
Recall: Martingale convergence theorem

Fact Let $\mathcal{B}_n \in \mathbb{F}^*$, $n \in \mathbb{N}$ such that $\mathcal{B}_n \subset \mathcal{B}_{n+1}$ for every $n \in \mathbb{N}$ and let $\mathcal{B} := \bigvee_{n \in \mathbb{N}} \mathcal{B}_n$. Then $\|P_{\mathcal{B}_n}f - P_{\mathcal{B}}f\|_p \to 0$ for every $f \in L^p(\mathcal{F})$, $p \in [1, \infty)$ and $P_{\mathcal{B}_n}g \to P_{\mathcal{B}}g \mathbb{P}$ -a.s. for any $g \in L^1(\mathcal{F})$.

Fact

Let $\mathcal{B}_n \in \mathbb{F}^*$, $n \in \mathbb{N}$ such that $\mathcal{B}_n \supset \mathcal{B}_{n+1}$ for every $n \in \mathbb{N}$ and let $\mathcal{B} := \bigcap_{n \in \mathbb{N}} \mathcal{B}_n$. Then $\|\mathcal{P}_{\mathcal{B}_n} f - \mathcal{P}_{\mathcal{B}} f\|_p \to 0$ for every $f \in L^p(\mathcal{F})$, $p \in [1, \infty)$ and $\mathcal{P}_{\mathcal{B}_n} g \to \mathcal{P}_{\mathcal{B}} g \mathbb{P}$ -a.s. for any $g \in L^1(\mathcal{F})$. The set of sub- σ -algebras is a compact metric space. L Convergence of σ -algebras

Implications



L^2 -varying convergence of σ -algebras

Let $\mathcal{B}_n, \mathcal{B} \in \mathbb{F}^*$, $n \in \mathbb{N}$.

Let $P_{\mathcal{A}}(f) := \mathbb{E}[f|\mathcal{A}], f \in L^1(\mathcal{F}), \mathcal{A} \in \mathbb{F}^*.$

Skorohod J_1 -convergence

Strong convergence

 L^2 -varying convergence

Hausdorff convergence

Set-theoretic convergence

Almost-sure convergence

Monotone convergence

Operator-norm convergence

$$\begin{split} & \mathcal{P}_{\mathcal{B}_n} 1_A \to 1_A \text{ in } \mathbb{P}\text{-probability for every } A \in \mathcal{B}, ^{\ddagger} \\ & \mathcal{P}_{\mathcal{B}_n} 1_A \to \mathcal{P}_{\mathcal{B}} 1_A \text{ in } \mathbb{P}\text{-probability for every } A \in \mathcal{F}, \\ & \|\mathcal{P}_{\mathcal{B}_n} f\|_2 \to \|\mathcal{P}_{\mathcal{B}} f\|_2 \text{ for every } f \in L^2(\mathcal{F}), \\ & [\sup_{A_n \in \mathcal{B}_n} \inf_{B \in \mathcal{B}} \mathbb{P}(A_n \Delta B) + \sup_{A \in \mathcal{B}} \inf_{B_n \in \mathcal{B}_n} \mathbb{P}(A \Delta B_n)] \to 0, \\ & \lim_{n \to \infty} \inf_{B_n} \mathcal{B}_n := \bigvee_{n \geqslant 1} \bigcap_{k \geqslant n} \mathcal{B}_k = \mathcal{B} = \bigcap_{n \geqslant 1} \bigvee_{k \geqslant n} \mathcal{B}_k = :\lim_{n \gg 1} \sup_{B_n} \mathcal{B}_n, \\ & \mathcal{P}_{\mathcal{B}_n} f \to \mathcal{P}_{\mathcal{B}} f \mathbb{P}\text{-a.s. for any } f \in L^1(\mathcal{F}), \\ & \mathcal{B}_n \uparrow \bigvee_{n \geqslant 1} \mathcal{B}_n = \mathcal{B} \text{ or } \mathcal{B}_n \downarrow \bigcap_{n \geqslant 1} \mathcal{B}_n = \mathcal{B} \\ & \|\mathcal{P}_{\mathcal{B}_n} - \mathcal{P}_{\mathcal{B}}\|_{L(L^2(\mathcal{F}), L^2(\mathcal{F}))} \to 0. \end{split}$$

[‡]non-unique limits

Example

Let $\Omega = [0, 1]$, $\mathcal{F} = \mathcal{B}([0, 1])$, i.e., the Borel σ -algebra on [0, 1] and $\mathbb{P} = dx \lfloor [0, 1]$.

Define the sequence $\mathcal{B}_n = \sigma(I^{(n)}) \vee \mathcal{N}$, where $I^{(n)} = I(n - 2^{\lfloor \log_2(n) \rfloor}, \lfloor \log_2(n) \rfloor)$ and $I(k, m) = \left\lceil \frac{k}{2^m}, \frac{k+1}{2^m} \right\rceil$ for $0 \leq k \leq 2^m - 1, m \in \mathbb{N}$.

Example

$$\mathcal{B}_n \to \{\emptyset, \Omega\} \lor \mathcal{N} =: \mathcal{B}_0 \text{ converges } L^2\text{-varying as } n \to \infty.$$

Example

There exists $g_0 \in L^2(\mathcal{F})$ such that $\mathbb{E}[g_0|\mathcal{B}_n] \not\rightarrow \mathbb{E}[g_0|\mathcal{B}_0]$ P-a.s.

For the same g_0 , there exists a (fast) subsequence $\{\mathcal{B}_{n_k}\}$ such that $\mathbb{E}[g_0|\mathcal{B}_{n_k}] \to \mathbb{E}[g_0|\mathcal{B}_0] \mathbb{P}$ -a.s.

The set of sub- σ -algebras is a compact metric space. Convergence of σ -algebras

Metrizability

Metrizability

Fact

The following metric generates the topology of L^2 -varying convergence

$$d(\mathcal{A},\mathcal{B}) := \sum_{j=1}^{\infty} 2^{-j} \frac{\left| \|\mathbb{E}[f_j|\mathcal{A}]\|_2 - \|\mathbb{E}[f_j|\mathcal{B}]\|_2 \right|}{1 + \left| \|\mathbb{E}[f_j|\mathcal{A}]\|_2 - \|\mathbb{E}[f_j|\mathcal{B}]\|_2 \right|}, \quad \mathcal{A}, \mathcal{B} \in \mathbb{F}^*,$$

where $\{f_j\}_{j \in \mathbb{N}}$ is a countable dense subset of $L^2(\mathcal{F})$.

Convergence of σ -algebras

Properties

Properties

Lemma

Let $\mathcal{B}_n \to \mathcal{B}$ be an L^2 -varying convergent sequence of sub- σ -algebras. Then

 $\|\mathbb{E}[f|\mathcal{B}_n] - \mathbb{E}[f|\mathcal{B}]\|_2 \to 0$

for every $f \in L^2(\mathcal{F})$, in other words, $P_{\mathcal{B}_n} \to P_{\mathcal{B}}$ in the strong operator topology.

Convergence of σ -algebras

Properties

Convergence of linear operators

Recall, $A_n, A \in L(L^2(\mathcal{F})) = L(L^2(\mathcal{F}), L^2(\mathcal{F})), n \in \mathbb{N}$, converge *strongly* $A_n \to A$ as $n \to \infty$, if and only if

$$\|A_ng - Ag\|_{L^2(\mathcal{F})} \to 0,$$

for every $g \in L^2(\mathcal{F})$. Furthermore, $A_n \rightarrow A$ weakly as $n \rightarrow \infty$ if and only if

$$|\langle A_ng - Ag, h \rangle| \rightarrow 0,$$

for every $g, h \in L^2(\mathcal{F})$.

Properties

Convergence of projection operators

Let $\mathbb{S} := \{A \in L(L^2(\mathcal{F})) : \|A\|_{L(L^2(\mathcal{F}))} = 1\}$ be the *unit sphere* in $L(L^2(\mathcal{F}))$.

Let $P \in L(L^2(\mathcal{F}))$ such that $P^2 = P$ and P is self-adjoint. Then P and $\mathrm{Id} - P$ are orthogonal projections onto the closed Hilbert subspaces $\mathrm{Rg} P$ and $\mathrm{Ker} P$ respectively. If $P \neq 0$, then $P \in \mathbb{S}$.

Definition (see e.g. [Attouch (1984)])

Let *H* be a Hilbert space. Let $C_n, C \subset H, n \in \mathbb{N}$, be closed, convex subsets. We say that $C_n \to C$ in *the Mosco sense*, if we have for the corresponding metric projections $P_{C_n}, P_C, n \in \mathbb{N}$, that

$$\|P_{C_n}g - P_Cg\|_H \to 0$$

for any $g \in H$ as $n \to \infty$.

Properties

Convergence of projection operators

For a sequence of orthogonal projections P_n , $n \in \mathbb{N}$ and an orthogonal projection P, it holds that

$$P_n \rightarrow P$$
 strongly if and only if $P_n \rightarrow P$ weakly.

Fact

The unit sphere of bounded operators ${\mathbb S}$ is compact in the weak operator topology.

Caution

One assumes a priori that P is an orthogonal projection. This does not follow from the weak convergence. There are counterexamples of sequences of orthogonal projections P_n in Hilbert spaces such that $P_n \rightarrow Q$ and Q is not a projection. The set of sub- σ -algebras is a compact metric space. \Box Convergence of σ -algebras

Properties

Sub-Markovian projections

Clearly, for $\mathcal{B} \in \mathbb{F}^*$, $P_{\mathcal{B}} \not\equiv 0$, as for the one-dimensional space $L^2(\{\emptyset, \mathcal{F}\} \lor \mathcal{N}) \subset \operatorname{Rg} P_{\mathcal{B}}.$

Definition

A projection $P \in S$ is called sub-Markovian, if $0 \leq Pf \leq 1$ for any $f \in L^2(\mathcal{F})$ with $0 \leq f \leq 1$.

Theorem (see e.g. [Schilling (2005)])

Let $P \in S$. Then there exists $\mathcal{B} \in \mathbb{F}^*$ such that $P_{\mathcal{B}} = \mathbb{E}[\cdot|\mathcal{B}]$ if and only if P is sub-Markovian and $P1_{\Omega} = 1_{\Omega}$.

Convergence of σ -algebras

Properties

Properties

Theorem

Let $A_n \to A$, $B_n \to B$ be L^2 -varying convergent sequences of sub- σ -algebras. Then

- **1** $\mathcal{A}_n \perp \mathcal{B}_n$ for every $n \in \mathbb{N}$ implies $\mathcal{A} \perp \mathcal{B}$,
- **2** $\mathcal{A}_n \vee \mathcal{B}_n \to \mathcal{A} \vee \mathcal{B}$ in the L²-varying sense,
- **3** $\mathcal{A}_n \cap \mathcal{B}_n \to \mathcal{A} \cap \mathcal{B}$ in the L^2 -varying sense.

2 Convergence in L^2 -bundles

The set of sub- σ -algebras is a compact metric space. \Box Convergence in L^2 -bundles

L^2 -bundle spaces

Consider

$$\mathbb{H} := \bigsqcup_{\mathcal{B} \in \mathbb{F}^*} L^2(\mathcal{B})$$

i.e., the disjoint union of L^2 -spaces, indexed by the sub- σ -algebras of \mathcal{F} .

The disjoint union is defined as the following set of pairs

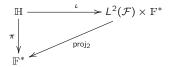
$$\bigsqcup_{i\in I} A_i := \bigcup_{i\in I} \{(x, i) \mid x \in A_i\}.$$

Let

$$\pi: \mathbb{H} \to \mathbb{F}^*$$

be the (bundle) projection on the index of the element in \mathbb{H} .

The collection \mathbb{H} mimics the total space of a fiber bundle, whereas \mathbb{F}^* plays the role of the base space of a fiber bundle:



Here,

$$\iota: \mathbb{H} \to L^2(\mathcal{F}) \times \mathbb{F}^*, \quad \iota(u) := (u, \pi(u))$$

denotes the standard embedding and proj_2 denotes the projection on the second component.

The set of sub- σ -algebras is a compact metric space. Convergence in L^2 -bundles \Box Strong convergence

Strong convergence

Definition (inspired by [Kuwae, Shioya (2003)])

Let $u_k, u \in \mathbb{H}, k \in \mathbb{N}$. We say that $u_k \to u$ strongly if $\pi(u_k) \to \pi(u) L^2$ -varying and there exist elements $\tilde{u}_m \in L^2(\pi(u)), m \in \mathbb{N}$, such that $\|\tilde{u}_m - u\|_2 \to 0$ as $m \to \infty$ and

$$\lim_{m} \limsup_{k} \|u_{k} - \mathbb{E}[\widetilde{u}_{m}|\pi(u_{k})]\|_{2} = 0.$$

Convergence in L²-bundle

Strong convergence

Lemma

Let $u_k, u \in \mathbb{H}$, $k \in \mathbb{N}$. Suppose that $\pi(u_k) \to \pi(u)$ in the L²-varying sense. Then the following conditions are equivalent

- 1 $u_k \rightarrow u$ strongly in \mathbb{H} ,
- 2 $\lim_{n} ||u_k \mathbb{E}[u|\pi(u_k)]||_2 = 0$,
- 3 $\lim_k ||u_k u||_2 = 0.$

The set of sub- σ -algebras is a compact metric space. Convergence in L^2 -bundles Weak convergence

Weak convergence

Definition (inspired by [Kuwae, Shioya (2003)])

Let $u_k, u \in \mathbb{H}$, $k \in \mathbb{N}$. We say that $u_k \rightarrow u$ weakly if $\pi(u_k) \rightarrow \pi(u)$ in the L^2 -varying sense and the following two conditions are satisfied:

1 it holds that

$$\sup_k \|u_k\|_2 < +\infty,$$

2 and, we have that

$$\lim_{k} \langle u_k, v_k \rangle = \langle u, v \rangle$$

for all $v_k \in L^2(\pi(u_k))$, $k \in \mathbb{N}$, $v \in L^2(\pi(u))$ such that $v_k \to v$ strongly in \mathbb{H} .

Convergence in L²-bundles

Weak convergence

3 Main result

Main result§

Theorem

Suppose that $L^2(\Omega, \mathcal{F}, \mathbb{P})$ is separable. Then

 $\mathbb{F}^* = \{ \mathcal{A} \lor \mathcal{N} : \mathcal{A} \text{ is a sub-}\sigma\text{-algebra of } \mathcal{F} \},\$

equipped with the topology of L^2 -varying convergence, is a compact metrizable space.

Corollary

Combined with the above remarks, the result implies that the subclass of sub-Markovian projection operators P with $P1_{\Omega} = 1_{\Omega}$ is a compact subset of S in the strong operator topology.

[§]From [Beissner, T. (2017), https://arxiv.org/abs/1802.05920].

Consequence

Let $\mathcal{B}_n \in \mathbb{F}^*$, $n \in \mathbb{N}$. Consider the following property:

There exists $\mathcal{B}_0 \in \mathbb{F}^*$ such that $\|\mathbb{E}[u|\mathcal{B}_n] - \mathbb{E}[u|\mathcal{B}_0]\|_2 \to 0$ for all $u \in L^2(\mathcal{F})$ (E)

(compare with [Tsukada, PTRF (1983)]).

Corollary

Let $\mathcal{B}_n \in \mathbb{F}^*$, $n \in \mathbb{N}$. Then property (E) is implied by the following: For every $u \in L^2(\mathcal{F})$, we have that

 $\exists \lim_{n} \|\mathbb{E}[u|\mathcal{B}_{n}]\|_{2} \in [0, +\infty).$

Steps of the proof

• Set
$$\mathbb{H}_1 := \bigsqcup_{\mathcal{B} \in \mathbb{F}^*} \{ f \in L^2(\mathcal{B}) : \|f\|_2 \leq 1 \} \subset \mathbb{H}.$$

Define a map

$$\mathcal{I}: \mathbb{H}_1 \to X_{u \in L^2(\mathcal{F})} \left([-\|u\|_2, \|u\|_2] \times [0, \|u\|_2] \right) =: \mathbb{T},$$

which is verified to be:

injective,

continuous from weak to pointwise convergence,

with continuous inverse (pointwise-to-weak).

• The range $\mathcal{I}(\mathbb{H}_1)$ is closed[¶] in \mathbb{T} and thus compact.

[¶]Limit points are in $L^2(\Sigma)$ for some $\Sigma \in \mathbb{F}^*$ — "Markov uniqueness".

Steps of the proo

As a consequence:

- \mathbb{H}_1 is compact w.r.t. the weak topology.
- As $\pi : \mathbb{H}_1 \to \mathbb{F}^*$ is continuous (weak-to- L^2 -varying) and onto, \mathbb{F}^* is compact!

Thank you for your attention!

 $\label{eq:constraint} \begin{tabular}{ll} || jonas.toelle@math.uni-augsburg.de & ---- https://jonas-toelle.com \end{tabular}$