joint work with Ioana Ciotir (INSA Rouen, Normandie Université)

Jonas Tölle

(Aalto University)

SPDE and Related Fields, Bielefeld

Conference on occasion of Michael Röckner's 60th Birthday

October 11, 2016

Aalto University School of Science

Contents

1 Motivation: The linear case

Zakaï equation

2 Framework and the SPDE

- Stochastic singular p-Laplace equations
- The noise coefficient operators
- Shigekawa's commutation result
- The p-Laplace operator
- Examples
- Rigid motions
- Stochastic variational inequalities (SVI)
- Heuristics for SVI

3 Main result

Motivation: The linear case

Nonlinear, singular SPDE perturbed by noise acting along infinitesimal motions on domains with symmetries location: The linear case

Zakaï equation

Consider the following linear SPDE in a separable Hilbert space $H, t \in [0, T]$:

$$dX_t = AX_t dt + \sum_{i=1}^N B_i X_t d\beta_t^i, \quad X_0 = x \in H,$$
(1)

for β^i , i = 1, ..., N, independent Brownian motions on $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, \mathbb{P})$.

A, B_i , i = 1, ..., N are unbounded linear operators on H.

Sufficient conditions on A and the B_i such that there exist strong solutions to (1) are given e.g. in [Da Prato & Zabczyk, Cambridge Univ. Press (1992), Chapter 6.5].

Following [Da Prato, Iannelli & Tubaro, Univ. Padova (1982)], [Da Prato, Iannelli & Tubaro, Stochastics (1982)], one obtains strong solutions to (1), whenever

- A generates a C_0 -semigroup e^{tA} .
- The B_i , i = 1, ..., N generate mutually commuting C_0 -groups e^{tB_i} , $t \in \mathbb{R}$, i = 1, ..., N.
- For every i = 1, ..., N, $D(B_i^2) \supset D(A)$, and $\bigcap_{i=1}^N D((B_i^*)^2)$ is a dense subset of H.
- The operator $C := A \frac{1}{2} \sum_{i=1}^{N} B_i^2$, D(C) := D(A) generates a C_0 -semigroup e^{tC} , $t \ge 0$.

Compare also with [Tubaro, Stoch. Anal. Appl. (1988)], where the commutation assumption was removed using Kunita's method of *stochastic characteristics*.

Motivation: The linear case

– Zakaï equation

Idea

Set

$$U_t := \prod_{i=1}^N e^{\beta_t^i B_i}, \quad t \in [0, T],$$

and let Y_t be the solution to the time-dependent random PDE

$$\frac{d}{dt}Y_t = U_t^{-1}CU_tY_t, \quad Y_0 = x.$$
(2)

Then $X_t := U_t Y_t$, $t \ge 0$ is a solution to (1).

Note that:

• We can \mathbb{P} -a.s. find strong solutions Y to (2) such that $t \mapsto Y_t$ is predictable.

In this case, X (as above) takes values in D(C) ℙ ⊗ dt-a.s. and is a strong solution to (1).

Motivation: The linear case

-Zakaï equation

Example (strongly elliptic case)

Let $H = L^2(\mathbb{R}^d)$, $d \in \mathbb{N}$ and N = 1. Set

$$Ay := \sum_{i,j=1}^{d} a_{i,j} \partial_i \partial_j y + \sum_{i=1}^{d} q_i \partial_i y + ry, \quad y \in H^2(\mathbb{R}^d) =: D(A),$$

$$By = \sum_{i=1}^d b_i \partial_i y + cy, \quad y \in D(B) = \{ y \in L^2(\mathbb{R}^d) \mid By \in L^2(\mathbb{R}^d) \}.$$

Assume for simplicity that $a_{i,j}$, q_i , r, b_i , c are all C^3 and bounded with bounded derivatives up to order 3. Assume that there exists a constant $\gamma > 0$ such that

$$\sum_{i,j=1}^d (a_{i,j}-rac{1}{2}b_ib_j)\lambda_i\lambda_j \geqslant \gamma\sum_{i=1}^d\lambda_i^2,$$

for all $\lambda = (\lambda_1, \dots, \lambda_d) \in \mathbb{R}^d$. Then the above conditions are satisfied.

Motivation: The linear case

– Zakaï equation

Can we extend this method?

Both the commutation assumption and the ellipticity of $C := A - \frac{1}{2} \sum_{i=1}^{N} B_i^2$ seem very restrictive.

Some observations:

- In view of the Trotter product formula, the commutation seems natural.
- $\frac{1}{2} \sum_{i=1}^{N} B_i^2 X dt$ is precisely the Itô-Stratonovich correction term of $\sum_{i=1}^{N} B_i X d\beta^i$.
- One could also define the B_i weakly in a Gelfand triple $H^1 \subset L^2 \subset (H^1)^*$.
- The transformation in (2) also makes sense, when the operator A (C resp.) is nonlinear, see [Barbu, Brzeźniak, Hausenblas & Tubaro, Stoch. Processes Appl. (2013)], [Barbu & Röckner, J. Eur. Math. Soc. (2015)]!
- One has to ensure that $(U_t)_{t \ge 0}$ is in some sense compatible with A.

Framework and the SPDE¹

¹based on [Ciotir & T., J. Funct. Anal. (2016)],

http://dx.doi.org/10.1016/j.jfa.2016.05.013, http://arxiv.org/abs/1507.02576.

Framework and the SPDE

Stochastic singular p-Laplace equations

Stochastic singular *p*-Laplace equations

Consider the nonlinear Stratonovich SPDE in $L^{2}(\mathcal{O})$,

$$dX_t = \operatorname{div}[\Psi(\nabla X_t)] dt + \sum_{i=1}^N \sum_{j=1}^d b_j^i \partial_j X_t \circ d\beta_t^i, \quad X_0 = x \in L^2(\mathcal{O}),$$
(3)

where $\mathcal{O} \subset \mathbb{R}^d$, $d \ge 2$ is an open bounded convex C^3 -smooth domain and $b: \overline{\mathcal{O}} \to \mathbb{R}^{N \times d}$ is a C^2 -smooth "coefficient field". Assume zero Neumann boundary conditions $\langle \nabla X, \nu \rangle = 0$, where ν denotes the outer normal on $\partial \mathcal{O}$.

 β^{i} , i = 1, ..., N, are independent Brownian motions on $(\Omega, \mathcal{F}, \{\mathcal{F}_{t}\}, \mathbb{P})$.

We shall also assume that

- The "row operators" $\langle b_i, \nabla \cdot \rangle$ commute (weakly) with the Neumann Laplace.
- The "row operators" $\langle b_i, \nabla \cdot \rangle$ commute mutually (or N = 1).
- $\Psi = \partial(\frac{1}{p}|\cdot|^p)$, where $p \in [1, 2]$. However, let us first assume for simplicity that $p \in (1, 2)$.

Framework and the SPDE

The noise coefficient operators

The noise coefficient operators

Let b_i be some row of b. Define the "row operators"

$$B_i u := \sum_{j=1}^d b_i^j \partial_j u, \quad u \in H^1(\mathcal{O}).$$

By [Sumitomo, Hokkaido Math. J. (1972)], it is necessary and sufficient for B_i to commute with the Laplace-Beltrami operator on *smooth functions* that

 b_i is a Killing vector field,

meaning that, the Jakobian of b_i is skew-symmetric, i.e.

$$\partial_j b_i^k + \partial_k b_i^l = 0 \quad \forall 1 \le j, k \le d.$$
(4)

This automatically implies that div $b_i = 0$.

Framework and the SPDE

The noise coefficient operators

Denote by $Z_t^i: \overline{\mathcal{O}} \to \overline{\mathcal{O}}$ the one-parameter flow of diffeomorphisms on $\overline{\mathcal{O}}$ generated by b_i , that is

$$\frac{d}{dt}Z_t^i = b_i(Z_t^i), \quad t \ge 0, \quad Z_0^i(\xi) = \xi \in \overline{\mathcal{O}}.$$

Let $e^{tB_i}: L^2(\mathcal{O}) \to L^2(\mathcal{O})$ denote the group associated to the operator $B_i u := \sum_{j=1}^d b_i^j \partial_j u$.

Then

$$(e^{tB_i}u)(\xi) = u(Z_t^i(\xi))$$

and e^{tB_i} commutes with e^{tB_j} , $1 \le i, j \le N$ on *smooth functions*, iff Z_t^i and Z_t^j commute in the sense of composition of maps.

This is implied by $b_i^k \partial_k b_i^j = b_i^k \partial_k b_i^j$ on $\overline{\mathcal{O}}$ for all $1 \leq k, j \leq d$ and $i \neq l$ (or by N = 1).

Framework and the SPDE

The noise coefficient operators

Theorem

Assume that $b_i \in C^2$, $1 \leq i \leq N$, with

1 $\langle b_i, \nu \rangle = 0$ on $\partial \mathcal{O}$ for all *i*, where ν denotes the outer normal on $\partial \mathcal{O}$,

2
$$N = 1$$
 or $b_i^k \partial_k b_i^j = b_i^k \partial_k b_i^j$ on $\overline{\mathcal{O}}$ for all $1 \leq k, j \leq d$ and $i \neq l$,

3 Db_i is skew-symmetric for all i on $\overline{\mathcal{O}}$.

Then B_i leaves Neumann boundary conditions invariant (on a core) for every *i*.

Also, for every $u \in H^1(\mathcal{O})$

$$B_i J_{\delta} u = J_{\delta} B_i u \quad \forall 1 \leqslant i \leqslant N \quad \forall \delta > 0.$$
 (Comm)

Here, $J_{\delta} = (\mathrm{Id} - \delta \Delta)^{-1}$ denotes the resolvent of the Neumann Laplace $-\Delta$.

- Framework and the SPDE
 - Shigekawa's commutation result

Shigekawa's commutation result

Theorem ([Shigekawa, Acta Appl. Math. (2000)])

Fix $1 \leq i \leq N$. (Comm) is implied by the following: Suppose there exists a linear subspace $\mathcal{D} \subset \operatorname{dom}(-\Delta)$ such that the following conditions hold:

- $1 \quad -\Delta(\mathcal{D}) \subseteq \operatorname{dom}(B_i),$
- $2 \quad B_i(\mathcal{D}) \subseteq \operatorname{dom}(-\Delta),$
- **3** \mathcal{D} is a core for $(-\Delta, \operatorname{dom}(-\Delta))$,
- 4 dom $(-\Delta) \subseteq$ dom (B_i) and dom $(-\Delta) \subseteq$ dom (B_i^*) ,
- 5 for any $u \in \mathcal{D}$, it holds that

$$B_i \Delta u = \Delta B_i u.$$

Nonlinear, singular SPDE perturbed by noise acting along infinitesimal motions on domains with symmetries Framework and the SPDE Second Se

We are able to verify 1.-5. in Shigekawa's theorem for the core $\mathcal{D} := C^{\infty}(\overline{\mathcal{O}}) \cap \mathcal{C}$, where

$$\mathcal{C} := \{ u \in C^2(\overline{\mathcal{O}}) \mid \langle \nabla u, \nu \rangle = 0 \text{ on } \partial \mathcal{O} \}.$$

The commutation of the noise coefficient with the Neumann Laplace is needed in order to obtain a cancellation of the Itô-Stratonovich correction term in the proof of the H^1 -energy estimate for the approximating equation

$$dX_t^{\varepsilon} = \operatorname{div}[\Psi(\nabla X_t^{\varepsilon})] dt + \varepsilon \Delta X_t^{\varepsilon} dt + \sum_{i=1}^N \sum_{j=1}^d b_i^j \partial_j X_t^{\varepsilon} \circ d\beta_t^i, \quad X_0^{\varepsilon} = x \in H^1(\mathcal{O}),$$

i.e., in order to get (morally) that

$$\mathbb{E} \|\nabla X_t^{\varepsilon}\|_{L^2(\mathcal{O};\mathbb{R}^d)}^2 + 2\varepsilon \mathbb{E} \int_0^t \|\Delta X_s^{\varepsilon}\|_{L^2(\mathcal{O})}^2 ds \leq \mathbb{E} \|\nabla x\|_{L^2(\mathcal{O};\mathbb{R}^d)}^2.$$

Note that the convexity of the domain is needed in order to prove

$$-\int_{\mathcal{O}}\operatorname{div}[\Psi(\nabla X^{\varepsilon})]\Delta X^{\varepsilon}\,d\xi\leqslant 0.$$

Framework and the SPDE

The *p*-Laplace operator

The *p*-Laplace operator

With $\Psi = \partial(\frac{1}{p}|\cdot|^p)$, in particular, with " ∂ ", we denote the Gâteaux differential for p > 1 (the subdifferential, resp., for p = 1), that is, $\partial(\frac{1}{p}|\cdot|^p)(\xi) = |\xi|^{p-2}\xi, \xi \in \mathbb{R}^d$. We will discuss the case of p = 1 later.

The quasi-linear partial differential operator " $u \mapsto div[\Psi(\nabla u)]$ " is called *p-Laplace* and, in particular, *singular p-Laplace*, if p < 2.

Its negative is an extension (in the sense of monotone graphs) of $F: H^1(\mathcal{O}) \to (H^1(\mathcal{O}))^*$

$$F(u)(v) := \int_{\mathcal{O}} \langle \Psi(\nabla u(\xi)), \nabla v(\xi) \rangle \, d\xi.$$

In fact, F is the Gâteaux differential of the convex functional

$$\Phi(u) := \frac{1}{p} \int_{\mathcal{O}} |\nabla u|^p \, d\xi, \quad u \in H^1(\mathcal{O}).$$

We see that the 2-Laplace is just the Neumann Laplace operator.

Framework and the SPDE

– Examples

Example

Let
$$d = 3$$
. Let $\mathcal{O} = B_1(0)$ be the 3D unit ball. Let $N = 1$. Let

$$b(\xi) = (\xi_3 - \xi_2, \xi_1 - \xi_3, \xi_2 - \xi_1)$$
 and denote $1 := (1, 1, 1)$ (clearly, $b(\xi) = \xi \times 1$).

Then b is a Killing vector field and (3) becomes

$$\begin{cases} dX_t \in \operatorname{div} \left[\Psi \left(\nabla X_t \right) \right] dt + \langle \xi \times \nabla X_t, 1 \rangle \circ d\beta_t, & \text{in } (0, T) \times \mathcal{O}, \\ X_0 = x, & \text{in } \mathcal{O}, \\ \frac{\partial X_t}{\partial \nu} = 0, & \text{on } (0, T) \times \partial \mathcal{O}. \end{cases}$$

Example

Above, we can take $b : \xi \mapsto \xi \times \zeta_0$ for any $\zeta_0 \in \mathbb{R}^3 \setminus \{0\}$. This is the infinitesimal generator of SO(3), where ζ_0 spans the axis of rotation.

In 2D, we can take the unit disk and $b: (\xi_1, \xi_2) \mapsto (\xi_2, -\xi_1)$, generating SO(2).

Framework and the SPDE

Examples

Example

Let N = d and $b_i^j = \delta_{i,j}$, $1 \le i, j \le d$. Then the above conditions are satisfied on \mathbb{T}^d and (3) reduces to

$$\begin{cases} dX_t \in \operatorname{div} \left[\Psi \left(\nabla X_t \right) \right] dt + \langle \nabla X_t, \circ d\beta_t \rangle, & \text{in } (0, T) \times \mathcal{O}, \\ X_0 = x, & \text{in } \mathcal{O}, \\ \frac{\partial X_t}{\partial \nu} = 0, & \text{on } (0, T) \times \partial \mathcal{O}. \end{cases}$$

This example is relevant in mathematical image processing of binary tomography.

The vector fields b_i are infinitesimal generators of translation groups in the coordinate directions of \mathbb{T}^d .

Framework and the SPDE

Rigid motions

Rigid motions

Fact: Killing vector fields in flat space are rigid motions

In Euclidean space $M = \mathbb{R}^d$ or in the flat torus $M = \mathbb{T}^d$, every Killing vector field is the infinitesimal generator of a Lie group of elements of the form

 $\xi \mapsto A\xi + \xi_0$

where $A \in SO(d)$ is the special orthogonal group (the orthogonal $d \times d$ -matrices with det A = 1) and $\xi_0 \in M$ is a translation by a vector. This group is called group of direct affine isometries or rigid motions and is denoted by SE(d). These are the isometries of M that preserve orientation.

Remark: SO(d) is the connected component of O(d) (the *orthogonal group*) which contains the identity. Connectedness is needed for the infinitesimal characterization.

Framework and the SPDE

- Stochastic variational inequalities (SVI)

Stochastic variational inequalities (SVI)

The Statonovich SPDE

$$dX_t = \operatorname{div}[\Psi(\nabla X_t)] dt + \sum_{i=1}^N \sum_{j=1}^d b_i^j \partial_j X_t \circ d\beta_t^j, \quad X_0 = x \in L^2(\mathcal{O}),$$

is formally equivalent to the Itô SPDE

$$dX_{t} = \operatorname{div}[\Psi(\nabla X_{t})] dt + \frac{1}{2} \sum_{i=1}^{N} B_{i}^{2} X_{t} dt + \sum_{i=1}^{N} B_{i} X_{t} d\beta_{t}^{i}, \quad X_{0} = x \in L^{2}(\mathcal{O}),$$
(SPDE)

where $B_i^2 := -B_i^* B_i$.

Let Z be any process ("test-process") of the form

$$dZ_t = G_t \, dt + \frac{1}{2} \sum_{i=1}^N B_i^2 Z_t \, dt + \sum_{i=1}^N B_i Z_t \, d\beta_t^i,$$

where G is some progressively process taking values in $L^2(\mathcal{O})$ and such that Z takes values in H^1 .

Nonlinear, singular SPDE perturbed by noise acting along infinitesimal motions on domains with symmetries Framework and the SPDE Heuristics for SVI

Heuristics for SVI

Consider d(X - Z) and apply Itô's formula "formally" for $u \mapsto \frac{1}{2} ||u||_{L^2(\mathcal{O})}^2$. We obtain, $\frac{1}{2} \|X_t - Z_t\|_{L^2}^2 = \frac{1}{2} \|x - Z_0\|_{L^2}^2$ + $\int_{-\infty}^{1} (\operatorname{div}[\Psi(\nabla X_s)] - G_s, X_s - Z_s)_{L^2} ds$ $+\frac{1}{2}\sum_{i=1}^{N}\int_{0}^{t}(B_{i}^{2}(X_{s}-Z_{s}),X_{s}-Z_{s})_{L^{2}}ds$ + $\sum_{i=1}^{N} \int_{0}^{t} (X_{s} - Z_{s}, B_{i}(X_{s} - Z_{s}) d\beta_{s}^{i})_{L^{2}}$ $+\frac{1}{2}\sum_{i=1}^{N}\int_{0}^{t}\|B_{i}(X_{s}-Z_{s})\|_{L^{2}}^{2}\,ds.$

However, on a formal level, we have that

$$(B_i^2(X-Z), X-Z)_{L^2} = -\|B_i(X-Z)\|_{L^2}^2.$$

Nonlinear, singular SPDE perturbed by noise acting along infinitesimal motions on domains with symmetries L Framework and the SPDE

Definition of SVI solutions

This motivates the following:

Definition

Let $x \in L^2(\Omega, \mathcal{F}_0, \mathbb{P}; L^2(\mathcal{O})), T > 0$. An $\{\mathcal{F}_t\}$ -progressively measurable process $X \in L^2([0, T] \times \Omega; L^2(\mathcal{O}))$ is called an *SVI-solution* to (SPDE) if $\Phi(X) \in L^1([0, T] \times \Omega)$ and for every $Z \in L^2([0, T] \times \Omega; H^1(\mathcal{O}))$ such that there exist $Z_0 \in L^2(\Omega, \mathcal{F}_0, \mathbb{P}; H^1(\mathcal{O})), G \in L^2([0, T] \times \Omega; L^2(\mathcal{O})), \{\mathcal{F}_t\}$ -progressively measurable, such that the following equality holds $L^2(\mathcal{O})$, that is,

$$Z_t = Z_0 + \int_0^t G_s \, ds + \frac{1}{2} \sum_{i=1}^N \int_0^t B_i^2 Z_s \, ds + \sum_{i=1}^N \int_0^t B_i Z_s \, d\beta_s^i,$$

 \mathbb{P} -a.s. for all $t \in [0, T]$, we have that the following variational inequality holds true:

Framework and the SPDE

Heuristics for SVI

Definition (cont'd)

$$\frac{1}{2}\mathbb{E}\|X_t - Z_t\|_{L^2(\mathcal{O})}^2 + \mathbb{E}\int_0^t \Phi(X_s) \, ds$$

$$\leqslant \frac{1}{2}\mathbb{E}\|x - Z_0\|_{L^2(\mathcal{O})}^2 + \mathbb{E}\int_0^t \Phi(Z_s) \, ds$$

$$- \mathbb{E}\int_0^t (G_s, X_s - Z_s)_{L^2(\mathcal{O})} \, ds,$$

for almost all $t \in [0, T]$.

Moreover, if $X \in L^2(\Omega; C([0, T]; L^2(\mathcal{O})))$, we say that X is a *(time-) continuous SVI solution* to (SPDE).

Main result

The main result

Theorem ([Ciotir & T, J. Funct. Anal. (2016)])

Let $x \in L^2(\Omega, \mathcal{F}_0.\mathbb{P}; L^2(\mathcal{O}))$. Then there is a unique time-continuous SVI solution $X \in L^2(\Omega; C([0, T]; L^2(\mathcal{O})))$ to (SPDE) in the sense of the previous definition. For two SVI solutions X, Y with initial conditions $x, y \in L^2(\Omega; L^2(\mathcal{O}))$, resp., we have that

$$\operatorname{ess\,sup}_{t\in[0,T]} \mathbb{E} \|X_t - Y_t\|_{L^2(\mathcal{O})}^2 \leq \mathbb{E} \|x - y\|_{L^2(\mathcal{O})}^2.$$

Some Remarks

The existence of time-continuous SVI-solutions is proved via several approximation steps.

The Stratonovich type of the equation, the a priori estimate from the previous slide and the monotone structure of the drift help us to pass to the limit. We also use a Wong-Zakai type convergence result by [Barbu, Brzeźniak, Hausenblas & Tubaro, Stoch. Processes Appl. (2013)] which is in the spirit of [Brzeźniak, Capiński, Flandoli, Stochastics (1988)].

It is worth mentioning this paper, where similar equations in a setting with more regularity were studied using the semigroup method presented in the beginning of this talk, also known as the Doss–Sussmann–transformation.

Also, in [Barbu & Röckner, J. Eur. Math. Soc. (2015)], the semigroup-transformation approach is used in an infinite dimensional-noise setting. This paper also introduces a product Itô formula for the "stochastic multiplier" $U_t = e^{\sum_{i=1}^N \beta_t^i B_i}$. Compare also with [Munteanu & Röckner, Preprint, to appear in IDAQP (2016)].

p = 1

The above methods also work for the case of p = 1, that is, $\Psi = \text{Sgn}$, so that we get the stochastic Stratonovich total variation flow

$$dX_t \in \operatorname{div}[\operatorname{Sgn}(\nabla X_t)] dt + \sum_{i=1}^N \sum_{j=1}^d b_j^i \partial_j X_t \circ d\beta_t^i, \quad X_0 = x \in L^2(\mathcal{O}),$$

which is multi-valued, since Sgn is maximal monotone only if one defines

$$\operatorname{Sgn}(0) := \overline{B}_1(0),$$

and Sgn(ξ) := $\xi/|\xi|$ for $\xi \neq 0$. Hence zeros of the gradient $\nabla X = 0$ create a special situation. We have that Sgn = $\partial |\cdot|$ (the subdifferential of the Euclidean norm).

p = 1

However, note that

- The convex energy Φ of "u → − div[Sgn(∇u)]", is the total variation ||Du||(O) of the distributional gradient measure Du, where u ∈ BV(O) is a function of bounded variation in L¹(O) (rather than ∫_O |∇u| dξ, u ∈ W^{1,1}(O), which is not lower semi-continuous in L¹).
- The SVI-framework permits an access to multi-valued equations via the energies / variational potentials (SVI-solutions are quite robust under Mosco-convergence of the energies, see [Gess & T., J. Differential Equations (2016)]).

Congratulations Michael!

Thank you for your attention!²

²jonas.tolle@aalto.fi — https://jonas-toelle.com