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Motivation: The linear case

Zakaï equation

Zakaï equation

Consider the following linear SPDE in a separable Hilbert space H, t ∈ [0, T ]:

dXt = AXt dt +

N∑
i=1

BiXt dβ
i
t , X0 = x ∈ H, (1)

for βi , i = 1, . . . , N, independent Brownian motions on (Ω,F , {Ft},P).

A,Bi , i = 1, . . . , N are unbounded linear operators on H.

Sufficient conditions on A and the Bi such that there exist strong solutions to (1)

are given e.g. in [Da Prato & Zabczyk, Cambridge Univ. Press (1992), Chapter 6.5].
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Zakaï equation

Following [Da Prato, Iannelli & Tubaro, Univ. Padova (1982)], [Da Prato, Iannelli &

Tubaro, Stochastics (1982)], one obtains strong solutions to (1), whenever

A generates a C0-semigroup etA.

The Bi , i = 1, . . . , N generate mutually commuting C0-groups etBi , t ∈ R,

i = 1, . . . , N.

For every i = 1, . . . , N, D(B2
i ) ⊃ D(A), and

⋂N
i=1 D((B∗i )2) is a dense subset

of H.

The operator C := A− 1
2

∑N
i=1 B

2
i , D(C) := D(A) generates a C0-semigroup

etC , t > 0.

Compare also with [Tubaro, Stoch. Anal. Appl. (1988)], where the commutation

assumption was removed using Kunita’s method of stochastic characteristics.
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Zakaï equation

Idea

Set

Ut :=

N∏
i=1

eβ
i
tBi , t ∈ [0, T ],

and let Yt be the solution to the time-dependent random PDE

d

dt
Yt = U−1

t CUtYt , Y0 = x. (2)

Then Xt := UtYt , t > 0 is a solution to (1).

Note that:

We can P-a.s. find strong solutions Y to (2) such that t 7→ Yt is predictable.

In this case, X (as above) takes values in D(C) P⊗ dt-a.s. and is a strong

solution to (1).
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Zakaï equation

Example (strongly elliptic case)

Let H = L2(Rd ), d ∈ N and N = 1. Set

Ay :=

d∑
i ,j=1

ai ,j∂i∂jy +

d∑
i=1

qi∂iy + ry , y ∈ H2(Rd ) =: D(A),

By =

d∑
i=1

bi∂iy + cy, y ∈ D(B) = {y ∈ L2(Rd ) | By ∈ L2(Rd )}.

Assume for simplicity that ai ,j , qi , r , bi , c are all C3 and bounded with bounded

derivatives up to order 3. Assume that there exists a constant γ > 0 such that

d∑
i ,j=1

(ai ,j −
1

2
bibj )λiλj > γ

d∑
i=1

λ2
i ,

for all λ = (λ1, . . . , λd ) ∈ Rd . Then the above conditions are satisfied.
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Zakaï equation

Can we extend this method?

Both the commutation assumption and the ellipticity of C := A− 1
2

∑N
i=1 B

2
i seem

very restrictive.

Some observations:

In view of the Trotter product formula, the commutation seems natural.

1
2

∑N
i=1 B

2
i X dt is precisely the Itô-Stratonovich correction term of∑N

i=1 BiX dβ
i .

One could also define the Bi weakly in a Gelfand triple H1 ⊂ L2 ⊂ (H1)∗.

The transformation in (2) also makes sense, when the operator A (C resp.) is

nonlinear, see [Barbu, Brzeźniak, Hausenblas & Tubaro, Stoch. Processes

Appl. (2013)], [Barbu & Röckner, J. Eur. Math. Soc. (2015)]!

One has to ensure that (Ut)t>0 is in some sense compatible with A.
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Framework and the SPDE1

1based on [Ciotir & T., J. Funct. Anal. (2016)],

http://dx.doi.org/10.1016/j.jfa.2016.05.013, http://arxiv.org/abs/1507.02576.

http://dx.doi.org/10.1016/j.jfa.2016.05.013
http://arxiv.org/abs/1507.02576
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Stochastic singular p-Laplace equations

Stochastic singular p-Laplace equations

Consider the nonlinear Stratonovich SPDE in L2(O),

dXt = div[Ψ(∇Xt)] dt +

N∑
i=1

d∑
j=1

bji ∂jXt ◦ dβ
i
t , X0 = x ∈ L2(O), (3)

where O ⊂ Rd , d > 2 is an open bounded convex C3-smooth domain and

b : O → R
N×d is a C2-smooth “coefficient field”. Assume zero Neumann boundary

conditions 〈∇X, ν〉 = 0, where ν denotes the outer normal on ∂O.

βi , i = 1, . . . , N, are independent Brownian motions on (Ω,F , {Ft},P).

We shall also assume that

The “row operators” 〈bi ,∇·〉 commute (weakly) with the Neumann Laplace.

The “row operators” 〈bi ,∇·〉 commute mutually (or N = 1).

Ψ = ∂( 1
p
| · |p), where p ∈ [1, 2]. However, let us first assume for simplicity that

p ∈ (1, 2).
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The noise coefficient operators

The noise coefficient operators

Let bi be some row of b. Define the “row operators”

Biu :=

d∑
j=1

bji ∂ju, u ∈ H1(O).

By [Sumitomo, Hokkaido Math. J. (1972)], it is necessary and sufficient for Bi to

commute with the Laplace-Beltrami operator on smooth functions that

bi is a Killing vector field,

meaning that, the Jakobian of bi is skew-symmetric, i.e.

∂jb
k
i + ∂kb

j
i = 0 ∀1 6 j, k 6 d. (4)

This automatically implies that div bi = 0.
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The noise coefficient operators

Denote by Z it : O → O the one-parameter flow of diffeomorphisms on O generated

by bi , that is
d

dt
Z it = bi (Z

i
t), t > 0, Z i0(ξ) = ξ ∈ O.

Let etBi : L2(O)→ L2(O) denote the group associated to the operator

Biu :=
∑d

j=1 b
j
i ∂ju.

Then

(etBi u)(ξ) = u(Z it(ξ))

and etBi commutes with etBj , 1 6 i , j 6 N on smooth functions, iff Z it and Z
j
t

commute in the sense of composition of maps.

This is implied by bki ∂kb
j
l = bkl ∂kb

j
i on O for all 1 6 k, j 6 d and i 6= l (or by N = 1).
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The noise coefficient operators

Theorem

Assume that bi ∈ C2, 1 6 i 6 N, with

1 〈bi , ν〉 = 0 on ∂O for all i , where ν denotes the outer normal on ∂O,

2 N = 1 or bki ∂kb
j
l = bkl ∂kb

j
i on O for all 1 6 k, j 6 d and i 6= l ,

3 Dbi is skew-symmetric for all i on O.

Then Bi leaves Neumann boundary conditions invariant (on a core) for every i .

Also, for every u ∈ H1(O)

BiJδu = JδBiu ∀1 6 i 6 N ∀δ > 0. (Comm)

Here, Jδ = (Id−δ∆)−1 denotes the resolvent of the Neumann Laplace −∆.
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Framework and the SPDE

Shigekawa’s commutation result

Shigekawa’s commutation result

Theorem ([Shigekawa, Acta Appl. Math. (2000)])

Fix 1 6 i 6 N. (Comm) is implied by the following: Suppose there exists a linear

subspace D ⊂ dom(−∆) such that the following conditions hold:

1 −∆(D) ⊆ dom(Bi ),

2 Bi (D) ⊆ dom(−∆),

3 D is a core for (−∆, dom(−∆)),

4 dom(−∆) ⊆ dom(Bi ) and dom(−∆) ⊆ dom(B∗i ),

5 for any u ∈ D, it holds that

Bi∆u = ∆Biu.



15/29

Nonlinear, singular SPDE perturbed by noise acting along infinitesimal motions on domains with symmetries

Framework and the SPDE

Shigekawa’s commutation result

We are able to verify 1.-5. in Shigekawa’s theorem for the core D := C∞(O) ∩ C,

where

C := {u ∈ C2(O) | 〈∇u, ν〉 = 0 on ∂O}.

The commutation of the noise coefficient with the Neumann Laplace is needed in

order to obtain a cancellation of the Itô-Stratonovich correction term in the proof of

the H1-energy estimate for the approximating equation

dXεt = div[Ψ(∇Xεt )] dt + ε∆Xεt dt +

N∑
i=1

d∑
j=1

bji ∂jX
ε
t ◦ dβit , Xε0 = x ∈ H1(O),

i.e., in order to get (morally) that

E‖∇Xεt ‖2
L2(O;Rd )

+ 2εE

ˆ t

0
‖∆Xεs ‖2

L2(O)
ds 6 E‖∇x‖2

L2(O;Rd )
.

Note that the convexity of the domain is needed in order to prove

−
ˆ
O

div[Ψ(∇Xε)]∆Xε dξ 6 0.
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The p-Laplace operator

The p-Laplace operator

With Ψ = ∂( 1
p
| · |p), in particular, with “∂”, we denote the Gâteaux differential for

p > 1 (the subdifferential, resp., for p = 1), that is, ∂( 1
p
| · |p)(ξ) = |ξ|p−2ξ, ξ ∈ Rd .

We will discuss the case of p = 1 later.

The quasi-linear partial differential operator “u 7→ div[Ψ(∇u)]” is called p-Laplace

and, in particular, singular p-Laplace, if p < 2.

Its negative is an extension (in the sense of monotone graphs) of

F : H1(O)→ (H1(O))∗

F (u)(v) :=

ˆ
O
〈Ψ(∇u(ξ)),∇v(ξ)〉 dξ.

In fact, F is the Gâteaux differential of the convex functional

Φ(u) :=
1

p

ˆ
O
|∇u|p dξ, u ∈ H1(O).

We see that the 2-Laplace is just the Neumann Laplace operator.
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Examples

Example

Let d = 3. Let O = B1(0) be the 3D unit ball. Let N = 1. Let

b(ξ) = (ξ3 − ξ2, ξ1 − ξ3, ξ2 − ξ1) and denote 1 := (1, 1, 1) (clearly, b(ξ) = ξ × 1).

Then b is a Killing vector field and (3) becomes
dXt ∈ div [Ψ (∇Xt)] dt + 〈ξ ×∇Xt , 1〉 ◦ dβt , in (0, T )×O,

X0 = x, in O,

∂Xt

∂ν
= 0, on (0, T )× ∂O.

Example

Above, we can take b : ξ 7→ ξ × ζ0 for any ζ0 ∈ R3 \ {0}. This is the infinitesimal

generator of SO(3), where ζ0 spans the axis of rotation.

In 2D, we can take the unit disk and b : (ξ1, ξ2) 7→ (ξ2,−ξ1), generating SO(2).
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Examples

Example

Let N = d and bji = δi ,j , 1 6 i , j 6 d . Then the above conditions are satisfied on Td

and (3) reduces to
dXt ∈ div [Ψ (∇Xt)] dt + 〈∇Xt , ◦dβt〉, in (0, T )×O,

X0 = x, in O,

∂Xt

∂ν
= 0, on (0, T )× ∂O.

This example is relevant in mathematical image processing of binary tomography.

The vector fields bi are infinitesimal generators of translation groups in the

coordinate directions of Td .
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Rigid motions

Rigid motions

Fact: Killing vector fields in flat space are rigid motions

In Euclidean space M = Rd or in the flat torus M = Td , every Killing vector field is

the infinitesimal generator of a Lie group of elements of the form

ξ 7→ Aξ + ξ0

where A ∈ SO(d) is the special orthogonal group (the orthogonal d × d-matrices

with detA = 1) and ξ0 ∈ M is a translation by a vector. This group is called group

of direct affine isometries or rigid motions and is denoted by SE(d). These are the

isometries of M that preserve orientation.

Remark: SO(d) is the connected component of O(d) (the orthogonal group) which

contains the identity. Connectedness is needed for the infinitesimal characterization.
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Stochastic variational inequalities (SVI)

Stochastic variational inequalities (SVI)

The Statonovich SPDE

dXt = div[Ψ(∇Xt)] dt +

N∑
i=1

d∑
j=1

bji ∂jXt ◦ dβ
i
t , X0 = x ∈ L2(O),

is formally equivalent to the Itô SPDE

dXt = div[Ψ(∇Xt)] dt +
1

2

N∑
i=1

B2
i Xt dt +

N∑
i=1

BiXt dβ
i
t , X0 = x ∈ L2(O),

(SPDE)

where B2
i := −B∗i Bi .

Let Z be any process (“test-process”) of the form

dZt = Gt dt +
1

2

N∑
i=1

B2
i Zt dt +

N∑
i=1

BiZt dβ
i
t ,

where G is some progressively process taking values in L2(O) and such that Z takes

values in H1.
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Heuristics for SVI

Consider d(X −Z) and apply Itô’s formula “formally” for u 7→ 1
2
‖u‖2

L2(O)
. We obtain,

1

2
‖Xt − Zt‖2

L2 =
1

2
‖x − Z0‖2

L2

+

ˆ t

0
(div[Ψ(∇Xs)]− Gs , Xs − Zs)L2 ds

+
1

2

N∑
i=1

ˆ t

0
(B2

i (Xs − Zs), Xs − Zs)L2 ds

+

N∑
i=1

ˆ t

0
(Xs − Zs , Bi (Xs − Zs) dβis)L2

+
1

2

N∑
i=1

ˆ t

0
‖Bi (Xs − Zs)‖2

L2 ds.

However, on a formal level, we have that

(B2
i (X − Z), X − Z)L2 = −‖Bi (X − Z)‖2

L2 .
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Heuristics for SVI

Definition of SVI solutions

This motivates the following:

Definition

Let x ∈ L2(Ω,F0,P;L2(O)), T > 0. An {Ft}-progressively measurable process

X ∈ L2([0, T ]×Ω;L2(O)) is called an SVI-solution to (SPDE) if

Φ(X) ∈ L1([0, T ]×Ω) and for every Z ∈ L2([0, T ]×Ω;H1(O)) such that there

exist Z0 ∈ L2(Ω,F0,P;H1(O)), G ∈ L2([0, T ]×Ω;L2(O)), {Ft}-progressively

measurable, such that the following equality holds L2(O), that is,

Zt = Z0 +

ˆ t

0
Gs ds +

1

2

N∑
i=1

ˆ t

0
B2
i Zs ds +

N∑
i=1

ˆ t

0
BiZs dβ

i
s ,

P-a.s. for all t ∈ [0, T ], we have that the following variational inequality holds true:
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Heuristics for SVI

Definition (cont’d)

1

2
E‖Xt − Zt‖2

L2(O)
+E

ˆ t

0
Φ(Xs) ds

6
1

2
E‖x − Z0‖2

L2(O)
+E

ˆ t

0
Φ(Zs) ds

−E
ˆ t

0
(Gs , Xs − Zs)L2(O) ds,

for almost all t ∈ [0, T ].

Moreover, if X ∈ L2(Ω;C([0, T ];L2(O))), we say that X is a (time-) continuous SVI

solution to (SPDE).
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The main result

Theorem ([Ciotir & T, J. Funct. Anal. (2016)])

Let x ∈ L2(Ω,F0.P;L2(O)). Then there is a unique time-continuous SVI solution

X ∈ L2(Ω;C([0, T ];L2(O))) to (SPDE) in the sense of the previous definition. For

two SVI solutions X, Y with initial conditions x, y ∈ L2(Ω;L2(O)), resp., we have

that

ess sup
t∈[0,T ]

E‖Xt − Yt‖2
L2(O)

6 E‖x − y‖2
L2(O)

.
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Some Remarks

The existence of time-continuous SVI-solutions is proved via several approximation steps.

The Stratonovich type of the equation, the a priori estimate from the previous slide and the

monotone structure of the drift help us to pass to the limit. We also use a Wong-Zakai type

convergence result by [Barbu, Brzeźniak, Hausenblas & Tubaro, Stoch. Processes Appl. (2013)]

which is in the spirit of [Brzeźniak, Capiński, Flandoli, Stochastics (1988)].

It is worth mentioning this paper, where similar equations in a setting with more regularity were

studied using the semigroup method presented in the beginning of this talk, also known as the

Doss–Sussmann–transformation.

Also, in [Barbu & Röckner, J. Eur. Math. Soc. (2015)], the semigroup-transformation approach

is used in an infinite dimensional-noise setting. This paper also introduces a product Itô formula

for the “stochastic multiplier” Ut = e
∑N
i=1

βitBi . Compare also with [Munteanu & Röckner,

Preprint, to appear in IDAQP (2016)].
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p = 1

The above methods also work for the case of p = 1, that is, Ψ = Sgn, so that we

get the stochastic Stratonovich total variation flow

dXt ∈ div[Sgn(∇Xt)] dt +

N∑
i=1

d∑
j=1

bji ∂jXt ◦ dβ
i
t , X0 = x ∈ L2(O),

which is multi-valued, since Sgn is maximal monotone only if one defines

Sgn(0) := B1(0),

and Sgn(ξ) := ξ/|ξ| for ξ 6= 0. Hence zeros of the gradient ∇X = 0 create a special

situation. We have that Sgn = ∂| · | (the subdifferential of the Euclidean norm).
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p = 1

p = 1

However, note that

The convex energy Φ of “u 7→ − div[Sgn(∇u)]”, is the total variation ‖Du‖(O)

of the distributional gradient measure Du, where u ∈ BV (O) is a function of

bounded variation in L1(O) (rather than
´
O |∇u| dξ, u ∈ W

1,1(O), which is not

lower semi-continuous in L1).

The SVI-framework permits an access to multi-valued equations via the

energies / variational potentials (SVI-solutions are quite robust under

Mosco-convergence of the energies, see [Gess & T., J. Differential Equations

(2016)]).
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