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Motivation

The p-Laplace equation

The p-Laplace equation

The p-Laplace evolution equation

@tu = div(|ru|
p�2
ru) + f

is called

degenerate for 2 < p <1,

singular for 1 < p < 2,

it reduces to the heat equation for p = 2,

the borderline case p = 1 is called total variation (TV-) flow.

Aim: Replace the force f with noise input G(·, u,ru) @tW (t, ·).
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Motivation

The p-Laplace equation

Incompressible non-Newtonian fluid dynamics.

For v(·) 2 3, the p-Laplace type diffusivity can be found in
8
><

>:

div v = 0

@tv + div(v ⌦ v)� ⌫ div(|Dv|p�2Dv) = �r⇡ + b

the equations for the velocity-field of a power-law fluid.

p > 2

Dilatant, or shear-thickening.

Examples: ooze / oobleck

(mixture of water and

corn-starch).

p < 2

Pseudoplastic, or

shear-thinning.

Examples: hair-gel (polymeric

molecules).

p = 2

Situation of Newtonian fluids

— Navier-Stokes equations.

Examples: water, glycerol,

ethanol.
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Motivation

The p-Laplace equation

Stochastic singular p-Laplace equation

Well-posedness for the stochastic scalar singular p-Laplace evolution equation

(with additive Gaussian noise)

du = div(|ru|p�2ru) dt + dW

on a bounded domain O ⇢ d for the case
⇣
1 _ 2d

d+2

⌘
< p < 2 was first studied in

[Liu, W., J. Math. Anal. Appl. (2009)]

in a similar variational setup as in

[Zhang, X., Stochastics and Dynamics (2009)],

[Ren, J./Röckner, M./Wang, F.-Y., J. Differential Equations (2007)],

extending [Krylov, N.V./Rozovskii, B.L. (1979)].

For stochastically forced vector-valued case, see e.g.: [Breit, D., J. Math. Fluid Mech. (2015)].
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Motivation

The p-Laplace equation

Stochastic singular p-Laplace equation

Further well-posedness results for multiplicative noise (not depending on ru)

du = div(|ru|p�2ru) dt + B(u) dW, u(0) = u0,

were obtained in:

[Barbu, V./Röckner, M., Arch. Ration. Mech. Anal. (2013)] for p = 1 (TV-flow)

[Gess, B./T, J. Math. Pures Appl. (2014)] for p 2 [1, 2], for initial data u0 2 H1(O)

[Barbu, V./Röckner, M., J. Eur. Math. Soc. (2015)] general method for linear

multiplicative noise

[Gess, B./T, J. Differential Equations (2016)] for p 2 [1, 2], for initial data u0 2 L2(O)

and for nonlocal p-Laplace; robustness of the solutions for p ! 1

[Gess, B./Röckner, M., Trans. Amer. Math. Soc. (2017)], higher regularity and more

general noise

[Marinelli, C./Scarpa, L., SPDE: Anal. Comp. (2018)], more general growth conditions
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Motivation

The p-Laplace equation

Stratonovich noise p-Laplace

On the d-dimensional flat torus d := d
/
d , consider:

dXt = div(a
⇤
�(arXt)) dt + hbrXt, �d�ti, X0 = x 2 L

2(Td ). (SPDE)

(SPDE) reduces to stochastic p-Laplace with multiplicative Stratonovich gradient

noise/transport noise for a = 1 and for

�(z) = |z |p�2z, z 2
d
, p 2 (1,1).

Note.

Here, we shall consider the case of any d 2 and any p 2 [1, 2].

�! We do not need Sobolev embeddings.
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Motivation

The p-Laplace equation

Stratonovich noise p-Laplace

On the d-dimensional flat torus d := d
/
d , consider:

dXt = div(a
⇤
�(arXt)) dt + hbrXt, �d�ti, X0 = x 2 L

2(Td ),

with:

1 a monotone nonlinearity � : d ! d or (multi-valued) � : d ! 2
d of (at

most) linear growth (corresponds to p 6 2),

2 C
1-coefficient fields a, b : d ! d⇥d ,

3 a d-dimensional Wiener process t 7! �t = (�1t , . . . ,�
d
t
) on a filtered standard

probability space (⌦,F , (Ft)t>0,P).
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Motivation

The p-Laplace equation

Stratonovich noise p-Laplace
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Motivation

The p-Laplace equation

Stratonovich noise p-Laplace

On the d-dimensional flat torus d := d
/
d , consider:

dXt = div(a
⇤
�(arXt)) dt + hbrXt, �d�ti, X0 = x 2 L

2(Td ),

with:

1 a monotone nonlinearity � : d ! d or (multi-valued) � : d ! 2
d of (at

most) linear growth (corresponds to p 6 2),

2 C
1-coefficient fields a, b : d ! d⇥d ,

3 a d-dimensional Wiener process t 7! �t = (�1t , . . . ,�
d
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) on a filtered standard
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Gradient noise SPDE (in a variational setting)

(Evolution) variational inequalities — general idea

(Evolution) variational inequalities — general idea

Suppose that the nonlinear operator

A(u) := div(a⇤�(aru)), u 2 dom(A),

is the negative Gâteaux gradient

�D (·) : dom(D ) ⇢ L2( d )! L2( d )⇤

for some (convex) potential  : L2( d )! .

We will see soon, that this is the case.

Assume first that b ⌘ 0. Then (SPDE) is has a gradient flow structure in L2,

u̇ = �D (u), u 2 L
2
.
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Gradient noise SPDE (in a variational setting)

(Evolution) variational inequalities — general idea

Evolution variational inequalities

Starting from a solution [0, T ] 3 t 7! u(t) to

u̇ = �D (u), u 2 L
2
,

such that u(0) = x ,

du = �D (u) dt
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Gradient noise SPDE (in a variational setting)

(Evolution) variational inequalities — general idea

Evolution variational inequalities

Starting from a solution [0, T ] 3 t 7! u(t) to

u̇ = �D (u), u 2 L
2
,

such that u(0) = x , we may write for z 2 C1([0, T ], L2),

d(u � z) = �D (u) dt � ż dt.
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Gradient noise SPDE (in a variational setting)

(Evolution) variational inequalities — general idea

Evolution variational inequalities

Starting from a solution [0, T ] 3 t 7! u(t) to

u̇ = �D (u), u 2 L
2
,

such that u(0) = x , we may write for z 2 C1([0, T ], L2),

d(u � z) = �D (u) dt � ż dt.

Applying the change of variable formula for k · k2
L2

(where Dkuk2
L2
= 2(u, ·)

L2), we

get for t 2 [0, T ],

ku(t)� z(t)k2
L2
� kx � z(0)k2

L2
= 2

ˆ
t

0
(D (u(s)) + ż(s), z(s)� u(s))

L2 ds.
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Gradient noise SPDE (in a variational setting)

(Evolution) variational inequalities — general idea

Evolution variational inequalities

Recall that  was assumed convex and hence D satisfies (in fact, is characterized

by) its subpotential property

(D (u), z � u)
L2 6  (z)� (u) 8z 2 L

2
.

Then

ku(t)� z(t)k2
L2
� kx � z(0)k2

L2
= 2

ˆ
t

0
(D (u(s)) + ż(s), z(s)� u(s))

L2 ds

leads to

ku(t)� z(t)k2
L2
+ 2

ˆ
t

0
 (u(s)) ds

6kx � z(0)k2
L2
+ 2

ˆ
t

0
 (z(s)) ds + 2

ˆ
t

0
(ż(s), z(s)� u(s))

L2 ds

(EVI)
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Gradient noise SPDE (in a variational setting)

(Evolution) variational inequalities — general idea

Evolution variational inequalities (EVI)

Definition

Let x 2 L2. A continuous path u 2 C([0, T ], L2) is called EVI-solution to

u̇ = �D (u), u(0) = x,

if

 (u(·)) 2 L1([0, T ]) (REG)

and if for every t 2 [0, T ] and for every z 2 C1([0, T ], L2) it holds that

ku(t)� z(t)k2
L2
+ 2

ˆ
t

0
 (u(s)) ds

6kx � z(0)k2
L2
+ 2

ˆ
t

0
 (z(s)) ds + 2

ˆ
t

0
(ż(s), z(s)� u(s))

L2 ds.

(EVI)



17

Stochastic nonlinear PDEs with singular drift and gradient noise

Gradient noise SPDE (in a variational setting)

(Evolution) variational inequalities — general idea

Some remarks

We can dispense with the requirement that u(·) 2 dom(D ) for which usually

dom(D ) $ L2 holds.

The right hand side of (EVI) can be equal to +1.

Strong solutions are automatically EVI-solutions, as seen above.

For sufficiently regular  , EVI-solutions are also strong solutions.

In many cases, and also in our case, dom( ) $ L2. We overcome this by setting

 ⌘ +1 on L2 \ dom( ).

One would also like to have that the new potential  : L2 ! [ {+1} is lower

semi-continuous (l.s.c.) in L2.

In the convex situation, one can usually take the l.s.c. envelope for this purpose.
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Gradient noise SPDE (in a variational setting)

(Evolution) variational inequalities — general idea

The gradient structure of A = div(a⇤�(ar·))

Let � = @ , where  : d ! [0,1).

(For convex  : d ! : ⌘ 2 @ (⇣) iff h⌘, w � ⇣i 6  (w)�  (⇣) for every

w 2 d .)

Set

e : u 7!
ˆ

d

 (aru) d⇠

Then consider its l.s.c. envelope

 := inf
n
lim inf
n!1

e (un) | un ! u 2 L2( d ) strongly
o
.
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Gradient noise SPDE (in a variational setting)

(Evolution) variational inequalities — general idea

The gradient structure of A = div(a⇤�(ar·))

On a formal level, we have that

A = (ar)⇤ � @ � (ar),

however, we may avoid

the characterization of the domain of A or the domain of  ,

singular energy spaces on weighted Riemannian manifolds of the type

W
1,p( d

, ga, d⇠), p ⇡ 1, or BV ( d
, ga, d⇠) where ga = (a⇤a)�1,

non-Hilbertian Gelfand triples V ⇢ H ⇢ V ⇤,

by employing stochastic variational inequalities (SVI).
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Gradient noise SPDE (in a variational setting)

About the drift part

About the drift part

1 a monotone (multi-valued) nonlinearity � : d ! d or � : d ! 2
d of at

most linear growth.

Singular case

We assume that there exist C > 0, K > 0, such that

� = @ , where  : d ! [0,1) and  (⇣) = ⇢(|⇣|) for all ⇣ 2 d ,

where ⇢ : [0,1)! [0,1), convex, continuous,

⇢(0) = 0, limr!1 ⇢(r) =1,

⇢(r) 6 C(1 + |r |2), for every r > 0, (quadratic growth condition)

⇢(2r) 6 K⇢(r), for every r > 0 (doubling, or �2-condition)
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Gradient noise SPDE (in a variational setting)

About the drift part

Example

Example

For � = @ , the following examples satisfy the previous conditions for a ⌘ 1:

 (⇣) := 1
p
|⇣|p, p 2 [1, 2], ⇣ 2 d ,

leading to the p-Laplace drift term div[|r · |p�2r·],

 (⇣) := (1 + |⇣|) log(1 + |⇣|)� |⇣|, ⇣ 2 d ,

leading to a special type of logarithmic diffusion drift term

div[log(1 + |r · |) sgn(r·)].
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Gradient noise SPDE (in a variational setting)

About the drift part

Ellipticity

1 a monotone (multi-valued) nonlinearity � : d ! d or � : d ! 2
d of at

most linear growth.

2 C
1-coefficient fields a, b : Td ! d⇥d .

Assume the following uniform ellipticity condition: 9 > 0:

|a(⇠)⇣|2 > |⇣|2 for all ⇣ 2 d and all ⇠ 2 d .

For simplicity, assume a similar condition for b.

Note.

We do neither assume that div ai = 0 nor that div bi = 0, where ai , bi denote the

rows of a, b respectively. As a consequence, the noise coefficient operator is not

skew-symmetric. (�! BDG-inequality not applicable in our proof).
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Gradient noise SPDE (in a variational setting)

About the noise part

Stratonovich  Itô

Fix a d-dimensional Wiener process t 7! �t = (�1t , . . . ,�
d

t
) on a filtered standard probability

space (⌦,F , (Ft)t>0,P).

Instead of the Stratonovich SPDE with linear degenerate gradient/transport noise

dXt = div(a
⇤
�(arXt)) dt + hbrXt, �d�t i, X0 = x 2 L

2( d ),

we actually consider the Itô SPDE (recall the formula f (X) � dX = f (X) dX + 1
2
d [f (X), X])

dXt = div(a
⇤
�(arXt)) dt +

1

2
L
b
Xt dt + hbrXt, d�t i, X0 = x 2 L

2( d ),

where Lb denotes the generator of the Dirichlet form

B(u, v) :=

ˆ
d

hbru, brvi d⇠.

On a core of smooth functions: Lbu = div(b⇤bru), u 2 C1( d ). See e.g. [Friz, P.K./Hairer,

M., Ch. 12, Springer (2014)] for more general transport noise with other nonlinear drift terms.
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The (geometric) structure of the equation

Curvature dimension conditions

A weighted Riemannian manifold

Set ga := (a⇤a)�1. Then d , with the Lebesgue measure d⇠, is a weighted

Riemannian manifold with metric ga and with density ⇢a :=
p
det(a⇤a) w.r.t. the

Riemannian volume.

Let Lau = div(a⇤aru) be the Dirichlet operator associated to the Dirichlet form

A(u, v) :=

ˆ
d

haru, arvi d⇠.

Then La = �a is the Laplace-Beltrami operator on ( d
, ga, d⇠).
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The (geometric) structure of the equation

Curvature dimension conditions

Curvature-dimension condition

Definition

Let ⇤a := {f 2 H1( d ) : Laf 2 H1( d )}. We say that ( d
, ga, d⇠) satisfies a

Bakry-Émery curvature-dimension condition BE(K,1) if there exists K 2 such

that

L
a
|arf |

2
� 2harf , arLaf i > K

2
|arf |

2
8f 2 ⇤a.

Let (P a
t
)t>0 be the heat semigroup associated to A.

Theorem (cf. [Wang, F.-Y., Bull. Sci. Math. (2011)])

BE(K,1) is equivalent to

|arP
a

t f | 6 e�2KtP at |arf | 8t > 0 8f 2 C1( d ).
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The (geometric) structure of the equation

Defective commutation condition

Defective commutation condition

Definition

Let R : H1( d )! L2( d ; d ) be a bounded linear operator such that there exists

C > 0 with

kRuk
2
L2( d ; d )

6 CA(u, u) 8u 2 H
1( d ).

We say that the weak defective commutation property holds for the operators

u 7! bru and La if there exists an operator R with the above properties such that

for every � > 0,

brG
a

�
u = Ga

�
bru + Ga

�
RG

a

�
u 8u 2 H

1( d ),

where Ga
�
:= (� � La)�1, � > 0 denotes the resolvent of La.
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The (geometric) structure of the equation

Defective commutation condition

The weak defective commuation property e.g. holds if

brL
a = Labr+ R

holds on some core of La, see [Shigekawa, I., J. Funct. Anal. (2006)]. This can be

viewed a kind of stochastic parabolicity condition.

Compare also with the Weitzenböck formula ⇤a = �a + R, where

⇤a := �(dd⇤ + d⇤d) is the Hodge-de Rham Laplace, and R is the curvature tensor.

Lemma

The weak defective commutation condition implies that there exists a constant

c 2 such that for every � > 0, we have that

�

ˆ
d

h�G
a

�
brf � �brG

a

�
f , brf i d⇠ > cA(f , f ) 8f 2 H

1( d ). (R)

Recall that �(�Ga
�
u � u)! Lau as � !1 for u 2 D(La).
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The (geometric) structure of the equation

Defective commutation condition

Example: rigid motions

By [Sumitomo, Hokkaido Math. J. (1972)], it is necessary and sufficient for the first

order operators Bi := hbi ,r·i (where bi are the rows of b) to commute with the

Laplace-Beltrami operator Lb on a core of smooth functions that

bi is a Killing vector field,

meaning that, the Jakobian of bi is skew-symmetric, i.e.

@j b
k

i
+ @kb

j

i
= 0 81 6 j, k 6 d.

This automatically implies that div bi = 0. These vector fields generate the group of

direct affine isometries or rigid motions, that is, the Lie group SE(d).

In this particular case, by [Shigekawa, I., Acta Appl. Math. (2000)], we get the weak

(defective) commutation, whenever a = b.
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Well-posedness

Approximative estimate

Approximation of the equation

Consider solutions X = Xn,�,�,",m to

dXt =


div(a⇤��(arXt)) + "L

a
Xt +

1

2
J
a

�
L
b
J
a

�
Xt

�
dt +

dX

i=1

hbi ,rJ
a

�
(⌘m ⇤ Xt)id�

i

t ,

X0 =xn 2 H
1( d ),

where " > 0 and

J
a

�
:= (1� �La)�1 = ��1Ga

1/�
, � > 0, denotes the resolvent of the Laplace

operator,

�
�, � > 0, denotes the Yosida approximation of �,

b = (b1, . . . , bd )
⇤,

(⌘m)m2 denotes a standard mollifier on d .
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Well-posedness

Approximative estimate

Lemma (Limit solutions)

For m !1, x 2 L2(⌦,F0, ;L2( d )) there exists a unique limit solution⇤ with

continuous paths, denoted by X = Xn,�,�,", to the approximating equation

dXt =


div(a⇤��(arXt)) + "L

a
Xt +

1

2
J
a

�
L
b
J
a

�
Xt

�
dt +

dX

i=1

hbi ,rJ
a

�
(Xt)id�

i

t ,

X0 =xn 2 H
1( d ).

Proof.

Fixed-point and perturbation argument, see [Gess, B./T, JMPA (2014)].

⇤i..e.,
h
supt2[0,T ] kX

m,xm
t

� Xx
t
k2
L2

i
! 0 as m !1 for every sequence of initial

conditions with xm 2 H1 such that kxm � xk
2 ! 0 and for every sequence of noise

coefficients kBm � Bk
L2( d ,L2) ! 0.
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Well-posedness

Approximative estimate

Two a priori estimates

Proposition ([T, SPDERF, in honor of Michael Röckner, Springer (2018)])

Under the above geometric conditions, X = Xn,�,�," satisfies the following two

energy bounds:

ess sup
t2[0,T ]

⇥
EkXtk2

L2

⇤
+2

ˆ
T

0

ˆ
d

 
�(arJ�Xt) d⇠ dt+2"E

ˆ
T

0
A(Xt,Xt) dt 6 kxnk

2
L2
,

ess sup
t2[0,T ]

[EA(Xt,Xt)] + 2"
ˆ
T

0
kL
a
Xtk

2
L2
dt 6 e�CTA(xn, xn).

The second estimate changes slightly if K 6 0 or c 6 0 in the curvature-dimension

condition on a or condition (R) for b respectively.
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Well-posedness

Approximative estimate

Stochastic variational inequality (SVI)

Denote H = L2(Td ), S = H1(Td ). Let U := RN . Denote by L2(U,H) the space of linear

Hilbert-Schmidt operators from U to H.

Denote B(x)⇣ :=
P
N

i=1hbi ,rxi⇣
i . Denote by  the l.s.c. envelope of

u 7!

8
><

>:

´
Td  (aru) d⇠, u 2 H

1(Td ),

+1, u 2 L2(Td ) \H1(Td ).

Definition

Let x 2 L2(⌦,F0, ;H), T > 0. A progressively measurable map X 2 L2([0, T ]⇥⌦;H) is said

to be an SVI-solution to (SPDE) if there exists a constant C > 0 such that

(Regularity)

ess sup
t2[0,T ]

EkXtk2H + 2E
ˆ
T

0
 (Xs ) ds 6 kxk

2
H
.
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Well-posedness

Approximative estimate

Definition (cont’d)

(Variational inequality) For every admissible test-function Z 2 L2([0, T ]⇥⌦;D(Lb)), that

is, there are Z0 2 L2(⌦,F0, ;S), G 2 L2([0, T ]⇥⌦;H), P 2 L(H) such that G is

progressively measurable, such that P (D(Lb)) ⇢ D(Lb) and such that

Zt = Z0 +

ˆ
t

0
Gs ds +

1

2

ˆ
t

0
P
⇤
L
b
PZs ds +

ˆ
t

0
BPZs d�s 8t 2 [0, T ],

we have that

kXt � Ztk
2
H
+ 2

ˆ
t

0
 (Xs ) ds

6 kx � Z0k
2
H
+ 2

ˆ
t

0
 (Zs ) ds

� 2

ˆ
t

0
(Gs ,Xs � Zs )H ds

�

ˆ
t

0
(LbPZ, PX � X)H ds �

ˆ
t

0
(X,Lb(Z � PZ))H ds

for almost all t 2 [0, T ].
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Well-posedness

The main result

The main result

Theorem (T, (2018+) https://arxiv.org/abs/1803.07005)

Suppose that the conditions from the beginning hold for  . Suppose that a, b are bounded and

uniformly elliptic. Suppose that the curvature-dimension condition holds for a. Suppose that the

weak defective commutation property holds for br and La.†

Then there exists a unique adapted time-continuous SVI-solution X 2 C([0, T ];L2(⌦;L2( d )))

to (SPDE) for every initial datum x 2 L2(⌦,F0, ;L2( d )) for every finite time-horizon T > 0

such that

ess sup
t2[0,T ]

kXt � Ytk
2
L2( d )

6 kx � yk
2
L2( d )

for any other SVI-solution Y 2 C([0, T ];L2(⌦;L2( d ))) starting in y 2 L2(⌦,F0, ;L2( d )).

†Assuming only condition (R) here is o.k., however, one then needs an additional technical

condition on the domain of Lb.
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Remarks on previous results

Previously ... for nonlinear, singular drift (i.e. p < 2) and linear

gradient/transport noise of the above type:

Idea: Doss (1976), Sussmann (1978), Brzeźniak, Capiński, Flandoli (1988), ...

Stratonovich-to-Itô transformation, commuting noise coefficients.

Tubaro (1988), Kunita (monograph 1990), ...

Method of stochastic characteristics.

[Barbu, V./Brzeźniak, Z./Hausenblas, E./Tubaro, L., Stochastic Processes Appl. (2013)]:

Smooth bounded domain O ⇢ d , Dirichlet or Neumann boundary conditions,

In a Gelfand triple, e.g.: W 1,p(O) ,! L2(O) ,! W�1,q(O), p > 1, p�1 + q�1 = 1.

Method uses convex conjugates,

hbi ,r·i and hbj ,r·i, i 6= j generate C0-groups that are assumed to commute.
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[Ciotir, I./T, J. Funct. Anal. (2016)]:

Neumann boundary conditions on a convex bounded domain O ⇢ d ,

bi 2 C
2, @O 2 C3, commutation,

p = 1 — total variation flow with gradient noise.

[Munteanu, I./Röckner, M., Infin. Dimens. Anal. Quantum. Probab. Relat.

Top. (2018)]:

Dirichlet boundary conditions on a bounded domain O ⇢ d ,

bi 2 C
2, @O 2 C3, commutation,

p = 1 — total variation (TV-) flow with gradient noise.

Positivity and finite time extinction results.

[Barbu, V./Brzeźniak, Z./Tubaro, L., Appl. Math. Optim. (2017)]:

L
1-theory under general assumptions (Brézis-Ekeland method — convex

conjugates),

no uniqueness for the TV-flow and weak continuity of paths.
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