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The stochastic Amari neural field model

The model

Stochastic PDE for mean-field cortex activity

Amari-type neural field model [Amari, Biological Cybernetics (1977)].

dUt(x) =

[
−αUt(x) +

ˆ
B
w(x, y)f (Ut(y)) dy

]
dt + εB dWt(x)

B ⊂ Rd bounded closed domain,

U : B × [0, T ]×Ω→ R,

α > 0, decay parameter, 0 < ε� 1, noise intensity parameter,

w : B × B → R kernel, modeling neural connectivity,

f : R→ (0,+∞) gain function, modeling neural input,

{Wt}t>0 cylindrical Wiener process with values in H := L2(B), modeled on

(Ω,F ,P); additive noise coefficient B ∈ L(H).
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The stochastic Amari neural field model

The model

Neuron

5_Users_jonas_Dropbox_Vortraege_SIAM_PD_Vortrag_dentrites.png

g ∼ voltage

[OpenStax, Anatomy & Physiology (2018)] [Coombes, beim Graben, Potthast (2014)

In: Neural Fields. Springer]
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The stochastic Amari neural field model

The model

Neuron / neural fields

g ∼ voltage, f ∼ gain, w ∼ connectivity

[OpenStax, Anatomy & Physiology (2018)] [Coombes, beim Graben, Potthast (2014)

In: Neural Fields. Springer]
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The stochastic Amari neural field model

The model

Typical gain functions f

Assume that f : R→ R is globally Lipschitz. Let F : H → H , F (v)(x) := f (v(x)),

v ∈ H = L2(B) be the Nemytskii operator. Typically examples for this model are (f > 0)

f (s) = (1 + e−s)−1 (Sigmoid)
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The stochastic Amari neural field model

The model

Typical gain functions f

Assume that f : R→ R is globally Lipschitz. Let F : H → H , F (v)(x) := f (v(x)),

v ∈ H = L2(B) be the Nemytskii operator. Typically examples for this model are (f > 0)

f (s) = (1 + e−s)−1 (Sigmoid) f (s) = 1
2

(tanh(s) + 1)
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The stochastic Amari neural field model

The model

The kernel

Let w : B × B → R be measurable such that:

Assumption 1

1 w(x, y) = w(y, x) for a.e. x, y ∈ B,

2 w ∈ L2(B × B) ∩ C(B × B),

3 w satisfies
n∑

i ,j=1

cicjw(xi , xj ) > 0

for every n ∈ N, for every {x1, . . . , xn} ⊂ B, and for every {c1, . . . , cn} ⊂ R.
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The stochastic Amari neural field model

The model

w(x, y) = J(x − y)

Then Assumption 1 implies that the linear operator K ∈ L(H) defined by

Kg(x) :=

ˆ
B
w(x, y)g(y) dy, g ∈ H,

is a nonnegative definite, self-adjoint Hilbert-Schmidt operator and, moreover, even

of trace-class (−→ Mercer’s therorem), as w is a so-called Mercer kernel on a

compact subset of Rd .

Assumption 2

Let J ∈ C(Rd ) such that w(x, y) = J(x − y) for x, y ∈ B.

Now, w satisfies Assumption 1 (3) e.g. if J is of the form

J(x) =

ˆ
Rd

cos(〈y, x〉)σ(dy), x ∈ Rd ,

for some symmetric probability measure σ on (Rd ,B(Rd )) −→ Bochner’s theorem.
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The stochastic Amari neural field model

The model

Examples of connectivity kernels d = 1

In this case, J is a real-valued characteristic function (“Fourier transform”) of a symmetric

probability distribution σ.

J(x) exp
(
− x2

2

)
exp(−|x |)

(
1 + x2

2

)−1

σ Gaussian Cauchy Laplace

J(x)
sin(x)
x

(
1− x2

)
exp

(
− x2

2

)
(1− |x |) exp(−|x |)

σ Uniform on [−1, 1]
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The stochastic Amari neural field model

The model

Examples of connectivity kernels d = 1

In this case, J is a real-valued characteristic function (“Fourier transform”) of a symmetric

probability distribution σ.

J(x) exp
(
− x2

2

)
exp(−|x |)

(
1 + x2

2

)−1

σ Gaussian Cauchy Laplace

J(x)
sin(x)
x

(
1− x2

)
exp

(
− x2

2

)
(1− |x |) exp(−|x |)

σ Uniform on [−1, 1] Mexican hat Wizard hat
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The stochastic Amari neural field model

The stochastic PDE

The stochastic PDE

Let {Wt}t>0 be a cylindrical Wiener process with values in H = L2(B) on a filtered

probability space (Ω,F , {Ft}t>0,P), B ∈ L(H).

dUt = [−αUt +KF (Ut)] dt + εB dWt , U0 = u0 ∈ H, t ∈ [0, T ]. (∗)

Theorem ([Da Prato, Zabczyk, Cambridge Univ. Press (1992)])

Let B ∈ L2(H). Then there exists a unique mild solution to (∗) with

U ∈ C([0, T ];H), P-a.s. having the form

Ut = e−αtu0 +

ˆ t

0
e−α(t−s)KF (Us) ds + ε

ˆ t

0
e−α(t−s)B dWs in H.
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The stochastic Amari neural field model

The stochastic PDE

Spatial regularity for additive noise

Lemma ([Kuehn, Riedler, J. Math. Neuroscience (2014)])

Assume that {BWt}t>0 is of the following form

BWt(x) =

∞∑
i=1

λivi (x)βit

with {βit}i∈Nt>0 independent standard Brownian motions, vi : B → R Lipschitz with

constants Li such that for some ρ ∈ (0, 1)

sup
x∈B

∣∣∣∣∣
∞∑
i=1

λ2
i vi (x)2

∣∣∣∣∣ <∞, sup
x∈B

∣∣∣∣∣
∞∑
i=1

λ2
i L

2ρ
i |vi (x)|2(1−ρ)

∣∣∣∣∣ <∞.
Then U ∈ C([0, T ], C(B)), whenever U0 ∈ C(B).
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The stochastic Amari neural field model

The stochastic PDE

Typical behavior in 1D

(B = [−80, 80], J centered Gaussian with standard deviation = 0.05,

f (s) = (s + 1)(1− s)(s − 0.1), α = 0.1, ε = 0.5 with space time white noise, u(x, 0) = 0.8)
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A gradient flow formulation

Section 2

A gradient flow formulation
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A gradient flow formulation

Gradient flows

In fact even for ε = 0, it was previously not known, whether one can find a gradient

structure to rewrite the PDE as

∂tu = −∇XF(u), u(·, t) = u(t) ∈ X ,

where X is a suitable function space — Hilbert, Banach, or metric space

(see e.g. [Ambrosio, Gigli, Savaré, Birkhäuser (2006)]) — and where

F : X → R

is a functional, which has often the natural interpretation of an energy, entropy or

some other physical notion.

As seen in [Kuehn, Riedler, J. Math. Neuroscience (2014)], the naïve guess

F(u) :=

ˆ
B

[
α

2
u(x)2 −

ˆ
B

ˆ u(x)

0
f (r)w(x, y) dr dy

]
dx

in X := L2(B) fails to produce the desired formulation.
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A gradient flow formulation

Change of ambient space

Change of ambient space

Recall: K is trace-class, nonnegative definite, self-adjoint. Hence:

The spectrum σ(K) is discrete with zero being its only accumulation point.

There exists an orthonormal basis {ei} of eigenvectors in L2(B) such that the eigenvalues

λi ∈ σ(K) \ {0} satisfy w.l.o.g.

lim
i→∞

λi = 0.

We have the orthogonal decomposition

H = Ker(K)⊕ S

where S := Ker(K)⊥ = span{ei}i∈N.

On S becomes a separable Hilbert space (denoted by H−1) with norm

‖u‖−1 := ‖K−
1
2 u‖H u ∈ S,

where K−
1
2 is the Moore-Penrose pseudo-inverse of K

1
2 .
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A gradient flow formulation

Change of ambient space

Gradients

Let ϕ : R→ R be any primitive function of f , i.e. ϕ′ = f . Set

Φ(u) :=

ˆ
B
ϕ(u(x)) dx u ∈ H,

and let

Ψ(v) :=
α

2
‖v‖2

−1, u ∈ S.

Lemma

Φ is well-defined, finite for all u ∈ H and continuous in H. Furthermore, we have that

DΦ(u)h = (F (u), h)H, u, h ∈ H,

where DΦ(u)h denotes the Gâteaux-directional derivative of Φ in u in direction h.
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A gradient flow formulation

Change of ambient space

Gradients

Furthermore, set Θ(u) := Ψ(u)−Φ|S(u), u ∈ S.

Lemma

For u, h ∈ H−1, we have that

DΘ(u)h = α(u, h)−1 − (KF (u), h)−1,

where DΘ(u)h denotes the Gâteaux-directional derivative of Φ in u in direction h.

Compare also with the ideas of [Ren, Röckner, Wang, J. Differential Equations

(2007)] and [Röckner, Wang, J. Differential Equations (2008)] −→ generalized

stochastic porous media equation.

However, in our situation, F is not assumed monotone.
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A gradient flow formulation

Change of ambient space

Inhibition and excitation

Remark

In the case that K is nonpositive definite, we can redefine H−1 by replacing K by −K

in the definition. Now, by changing the sign for Θ above, we obtain a gradient by a

similar procedure. We can interpret the case of nonnegative definite symmetric

kernels as domination by excitation, while the case of nonpositive definite kernels

corresponds to domination of the inhibition effects.
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A gradient flow formulation

Change of ambient space

Gradient flow formulation

Let {Wt}t>0 be as above. Let B ∈ L(H,H−1). Consider the gradient flow SPDE

dVt = −DΘ(Vt) dt + εB dWt , V0 = v0 ∈ H−1.

Assumption

Assume the regularity condition

B ∈ L2(H,H−1) and BK−1 ∈ L2(H−1, H). (∗)
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A gradient flow formulation

Change of ambient space

Gradient flow formulation (noise regularity)

In the simpler case that B is diagonalized w.r.t. {ei} with eigenvalues {bi}, i.e.

Bei = biei , i ∈ N,

we have that K and B commute and the second assumption in (∗) can be dropped.

Clearly, {b2
i λ
−1
i }∈ `1 ⇐⇒ B ∈ L2(H,H−1).

In this case,

BWt =

∞∑
i=1

bieiβ
i
t ,

with {βit}i∈Nt>0 independent standard Brownian motions on (Ω,F , {Ft}t>0,P).

One possibility is to set B := K, which corresponds to the continuum limit of a

neural Langevin equation, see [Bressloff, J. Phys. A (2012)].
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A gradient flow formulation

Change of ambient space

Gradient flow formulation (invariant subspace)

Theorem (Kuehn, T. (2019), invariance of the subspace H−1)

For B and K satisfying (∗), there exists a unique mild solution {Vt}t>0 in H−1 such

that, in particular, for v0 ∈ H−1, we have that V ∈ L2([0, T ];H−1) P-a.s. and there

exist constants C1, C2 > 0 with

E

[
sup
t∈[0,T ]

‖Vt‖2
−1

]
6 C1‖u0‖2

−1 + ε2C1,

In particular, the mild solution in H−1 coincides with the mild solution in H for initial

data in H−1.

C1 = 2 exp
(

2
[

(|f (0)|+ Lip(f ))‖K‖L(H) − α
]
T
)
,

C2 = C1T
(
κ‖B‖2

L2(H,H−1) + ‖K−1B‖2
L2(H,H−1)

)
,

with κ = κ(C1, T ) > 1.
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A gradient flow formulation

Change of ambient space

Pathwise regularity

Proposition

Let B and K satisfy (∗). If for fixed ω ∈ Ω, t 7→ BWt(ω) is càdlàg in H−1 and

BW (ω) ∈ L2([0, T ];H−1), we have for any intial datum v0 ∈ H−1 that the path

t 7→ Vt(ω) is weakly continuous in H−1 and strongly right-continuous in H−1.
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A gradient flow formulation

Invariant measures

Invariant measures

Let {Wt}t>0 be a cylindrical Wiener process with values in H. Consider solutions to

the equation

dXz,εt = (AXz,εt +DΦ(Xz,εt )) dt + ε dWt , Xz,ε0 = z ∈ H−1,

with (Au, ·)−1 := −α(K−1u, ·)H (which is the generator of a C0-semigroup {St}t>0

on H−1 which is the restriction of a C0-semigroup {S0
t }t>0 on H).

Recall that DΦ(u)h = (F (u), h)H, u, h ∈ H.

Remark

We may w.l.o.g. assume that t 7→
´ t

0 S
0
t−s dWs∈ C([0, T ];H−1) P-a.s. as the

semigroup {S0
t }t>0 is analytic.
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A gradient flow formulation

Invariant measures

Invariant measures (existence)

Define the transition semigroup

P εt G(z) := E
[
G(Xz,εt )

]
t > 0, z ∈ H−1,

where G : H−1 → R is bounded and measurable.

Theorem (by applying results from [Zabczyk, SPDEs and Appl. II (1989), Da Prato,

Zabczyk, Cambridge Univ. Press (1992)])

Assume that B = K. Then {P εt }t>0 is strongly Markovian and symmetric with

respect to its invariant measure, which exists and takes the following form

µε(dz) :=
1

Zε
exp

[
2ε−2Φ(z)

]
γε(dz),

where Zε :=
´
H−1

exp
[
2ε−2Φ(z)

]
γε(dz) and γε ∼ N(0,Γε), where Γε := 2ε2α−1K.
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A gradient flow formulation

Invariant measures

Invariant measures (uniqueness)

Theorem (Compare with [Maslowski, Stoch. Systems and Optim. (1989)])

Assume that B = K. Then µε is strong Feller in the restricted sense

(=⇒ asymptotic strong Feller) and thus unique, and the semigroup {P εt }t>0 is

ergodic.

Possible applications:

Large deviation principle / small noise asymptotics,

Kramers’ law, (see e.g. [Berglund, Markov Processes Related Fields (2013)]),

Kolmogorov operators / Fokker-Planck equations.
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A gradient flow formulation

Final remarks

Final remarks

Possible extensions:

the situation of B = Rd ;

multiplicative noise;

locally Lipschitz gain function f ;

improved estimates for more specific f like sigmoid or tanh;

indefinite kernels K (however, with dominating positive or negative spectrum).
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