Gradient flows for the stochastic Amari neural field model

Jonas M. Tölle (University of Helsinki, Augsburg University)

joint work with

Christian Kuehn (Technical University of Munich)

Journal of Mathematical Biology, 79 (2019), no. 4, 1227–1252

SIAM Conference on Analysis of Partial Differential Equations (PD19)

La Quinta, CA

December 14, 2019
Contents

1 The stochastic Amari neural field model
 - The model
 - The stochastic PDE

2 A gradient flow formulation
 - Change of ambient space
 - Invariant measures
 - Final remarks
Section 1

The stochastic Amari neural field model
Stochastic PDE for mean-field cortex activity

Amari-type neural field model [Amari, *Biological Cybernetics* (1977)].

\[dU_t(x) = \left[-\alpha U_t(x) + \int_B w(x, y)f(U_t(y)) \, dy \right] dt + \varepsilon B \, dW_t(x) \]
Stochastic PDE for mean-field cortex activity

Amari-type neural field model [Amari, *Biological Cybernetics* (1977)].

\[
dU_t(x) = \left[-\alpha U_t(x) + \int_B w(x, y) f(U_t(y)) \, dy \right] \, dt + \varepsilon B \, dW_t(x)
\]

- \(\mathcal{B} \subseteq \mathbb{R}^d \) bounded closed domain,
Stochastic PDE for mean-field cortex activity

Amari-type neural field model [Amari, Biological Cybernetics (1977)].

\[
dU_t(x) = \left[-\alpha U_t(x) + \int_B w(x, y) f(U_t(y)) \, dy\right] \, dt + \epsilon B \, dW_t(x)
\]

- \(B \subset \mathbb{R}^d \) bounded closed domain,
- \(U : B \times [0, T] \times \Omega \rightarrow \mathbb{R} \), “voltage”
Stochastic PDE for mean-field cortex activity

Amari-type neural field model [Amari, *Biological Cybernetics* (1977)].

\[
dU_t(x) = \left[-\alpha U_t(x) + \int_B w(x, y) f(U_t(y)) \, dy \right] \, dt + \varepsilon B \, dW_t(x)
\]

- \(B \subset \mathbb{R}^d \) bounded closed domain,
- \(U : B \times [0, T] \times \Omega \to \mathbb{R}, \) "voltage"
- \(\alpha > 0 \), decay parameter,
Stochastic PDE for mean-field cortex activity

Amari-type neural field model [Amari, *Biological Cybernetics* (1977)].

\[dU_t(x) = \left[-\alpha U_t(x) + \int_B w(x, y) f(U_t(y)) \, dy \right] \, dt + \varepsilon B \, dW_t(x) \]

- \(B \subseteq \mathbb{R}^d \) bounded closed domain,
- \(U : B \times [0, T] \times \Omega \to \mathbb{R}, \) “voltage”
- \(\alpha > 0 \), decay parameter, \(0 < \varepsilon \ll 1 \), noise intensity parameter,
Stochastic PDE for mean-field cortex activity

Amari-type neural field model [Amari, *Biological Cybernetics* (1977)].

\[
dU_t(x) = \left[-\alpha U_t(x) + \int_B w(x, y) f(U_t(y)) \, dy \right] dt + \varepsilon B \, dW_t(x)
\]

- \(\mathcal{B} \subset \mathbb{R}^d \) bounded closed domain,
- \(U : \mathcal{B} \times [0, T] \times \Omega \to \mathbb{R} \), “voltage”
- \(\alpha > 0 \), decay parameter, \(0 < \varepsilon \ll 1 \), noise intensity parameter,
- \(w : \mathcal{B} \times \mathcal{B} \to \mathbb{R} \) kernel, modeling neural connectivity,
Stochastic PDE for mean-field cortex activity

Amari-type neural field model [Amari, *Biological Cybernetics* (1977)].

\[
dU_t(x) = \left[-\alpha U_t(x) + \int_B w(x, y) f(U_t(y)) \, dy \right] \, dt + \varepsilon B \, dW_t(x)
\]

- \(B \subset \mathbb{R}^d \) bounded closed domain,
- \(U : B \times [0, T] \times \Omega \rightarrow \mathbb{R} \), “voltage”
- \(\alpha > 0 \), decay parameter, \(0 < \varepsilon \ll 1 \), noise intensity parameter,
- \(w : B \times B \rightarrow \mathbb{R} \) kernel, modeling neural connectivity,
- \(f : \mathbb{R} \rightarrow (0, +\infty) \) gain function, modeling neural input,
Gradient flows for the stochastic Amari neural field model

The stochastic Amari neural field model

The model

Stochastic PDE for mean-field cortex activity

Amari-type neural field model [Amari, *Biological Cybernetics* (1977)].

\[
\frac{dU_t(x)}{dt} = \left[-\alpha U_t(x) + \int_B w(x,y)f(U_t(y)) \, dy \right] dt + \varepsilon B dW_t(x)
\]

- \(B \subset \mathbb{R}^d \) bounded closed domain,
- \(U : B \times [0, T] \times \Omega \rightarrow \mathbb{R} \), “voltage”
- \(\alpha > 0 \), decay parameter, \(0 < \varepsilon \ll 1 \), noise intensity parameter,
- \(w : B \times B \rightarrow \mathbb{R} \) kernel, modeling neural connectivity,
- \(f : \mathbb{R} \rightarrow (0, +\infty) \) gain function, modeling neural input,
- \(\{W_t\}_{t \geq 0} \) cylindrical Wiener process with values in \(H := L^2(B) \), modeled on \((\Omega, \mathcal{F}, \mathbb{P})\); additive noise coefficient \(B \in L(H) \).
Neuron

[OpenStax, Anatomy & Physiology (2018)]
Gradient flows for the stochastic Amari neural field model

The stochastic Amari neural field model

The model

Neuron / neural fields

$g \sim$ voltage, $f \sim$ gain, $w \sim$ connectivity

[OpenStax, Anatomy & Physiology (2018)]

[Coombes, beim Graben, Potthast (2014)]

In: Neural Fields. Springer]
Typical gain functions f

Assume that $f : \mathbb{R} \rightarrow \mathbb{R}$ is globally Lipschitz. Let $F : H \rightarrow H$, $F(v)(x) := f(v(x))$, $v \in H = L^2(B)$ be the Nemytskii operator. Typically examples for this model are ($f > 0$)

$$f(s) = (1 + e^{-s})^{-1} \quad (Sigmoid)$$
Typical gain functions f

Assume that $f : \mathbb{R} \to \mathbb{R}$ is globally Lipschitz. Let $F : H \to H$, $F(\nu)(x) := f(\nu(x))$, $\nu \in H = L^2(\mathcal{B})$ be the Nemytskii operator. Typically examples for this model are ($f > 0$)

\[
f(s) = (1 + e^{-s})^{-1} \quad (\text{Sigmoid}) \quad \quad f(s) = \frac{1}{2}(\tanh(s) + 1)
\]
The kernel

Let \(w : \mathcal{B} \times \mathcal{B} \to \mathbb{R} \) be measurable such that:

<table>
<thead>
<tr>
<th>Assumption 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (w(x, y) = w(y, x)) for a.e. (x, y \in \mathcal{B}),</td>
</tr>
<tr>
<td>2. (w \in L^2(\mathcal{B} \times \mathcal{B}) \cap C(\mathcal{B} \times \mathcal{B})),</td>
</tr>
<tr>
<td>3. (w) satisfies (\sum_{i,j=1}^{n} c_i c_j w(x_i, x_j) \geq 0)</td>
</tr>
</tbody>
</table>

for every \(n \in \mathbb{N} \), for every \(\{x_1, \ldots, x_n\} \subset \mathcal{B} \), and for every \(\{c_1, \ldots, c_n\} \subset \mathbb{R} \).
Gradient flows for the stochastic Amari neural field model

The stochastic Amari neural field model

The model

\[w(x, y) = J(x - y) \]

Then Assumption 1 implies that the linear operator \(K \in L(H) \) defined by

\[K g(x) := \int_{\mathcal{B}} w(x, y) g(y) \, dy, \quad g \in H, \]

is a nonnegative definite, self-adjoint Hilbert-Schmidt operator and, moreover, even of trace-class (\(\longrightarrow \text{Mercer's theorem} \)), as \(w \) is a so-called \textit{Mercer kernel} on a compact subset of \(\mathbb{R}^d \).

Assumption 2

Let \(J \in C(\mathbb{R}^d) \) such that \(w(x, y) = J(x - y) \) for \(x, y \in \mathcal{B} \).

Now, \(w \) satisfies Assumption 1 (3) e.g. if \(J \) is of the form

\[J(x) = \int_{\mathbb{R}^d} \cos(\langle y, x \rangle) \sigma(dy), \quad x \in \mathbb{R}^d, \]

for some \textit{symmetric} probability measure \(\sigma \) on \((\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d)) \) \(\longrightarrow \text{Bochner's theorem} \).
Examples of connectivity kernels $d = 1$

In this case, J is a real-valued *characteristic function* ("Fourier transform") of a symmetric probability distribution σ.

\[
\begin{align*}
J(x) & \quad \exp \left(-\frac{x^2}{2} \right) \quad \exp(-|x|) \quad \left(1 + \frac{x^2}{2}\right)^{-1} \\
\sigma & \quad \text{Gaussian} \quad \text{Cauchy} \quad \text{Laplace}
\end{align*}
\]

\[
\begin{align*}
J(x) & \quad \frac{\sin(x)}{x} \quad (1 - x^2) \exp \left(-\frac{x^2}{2} \right) \quad (1 - |x|) \exp(-|x|) \\
\sigma & \quad \text{Uniform on } [-1, 1]
\end{align*}
\]
Examples of connectivity kernels $d = 1$

In this case, J is a real-valued characteristic function ("Fourier transform") of a symmetric probability distribution σ.

| $J(x)$ | $\exp\left(-\frac{x^2}{2}\right)$ | $\exp(-|x|)$ | $\left(1 + \frac{x^2}{2}\right)^{-1}$ |
|----------------------------------|-------------------------------------|---------------|--|
| σ | Gaussian | Cauchy | Laplace |

| $J(x)$ | $\frac{\sin(x)}{x}$ | $(1 - x^2) \exp\left(-\frac{x^2}{2}\right)$ | $(1 - |x|) \exp(-|x|)$ |
|----------------------------------|-------------------------------------|---|----------------------|
| σ | Uniform on $[-1, 1]$ | Mexican hat | Wizard hat |
The stochastic PDE

Let \(\{W_t\}_{t \geq 0} \) be a cylindrical Wiener process with values in \(H = L^2(B) \) on a filtered probability space \((\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P})\), \(B \in L(H) \).

\[
dU_t = \left[-\alpha U_t + KF(U_t) \right] dt + \epsilon B dW_t, \quad U_0 = u_0 \in H, \ t \in [0, T]. \tag{*}
\]

Theorem ([Da Prato, Zabczyk, *Cambridge Univ. Press (1992)*])

Let \(B \in L_2(H) \). Then there exists a unique mild solution to (*) with \(U \in C([0, T]; H) \), \(\mathbb{P} \)-a.s. having the form

\[
U_t = e^{-\alpha t}u_0 + \int_0^t e^{-\alpha(t-s)}KF(U_s) \, ds + \epsilon \int_0^t e^{-\alpha(t-s)} B \, dW_s \quad \text{in } H.
\]
Spatial regularity for additive noise

Assume that $\{BW_t\}_{t \geq 0}$ is of the following form

$$BW_t(x) = \sum_{i=1}^{\infty} \lambda_i v_i(x) \beta^i_t$$

with $\{\beta^i_t\}_{i \in \mathbb{N}, t \geq 0}$ independent standard Brownian motions, $v_i : \mathcal{B} \to \mathbb{R}$ Lipschitz with constants L_i such that for some $\rho \in (0, 1)$

$$\sup_{x \in \mathcal{B}} \left| \sum_{i=1}^{\infty} \lambda_i^2 v_i(x)^2 \right| < \infty, \quad \sup_{x \in \mathcal{B}} \left| \sum_{i=1}^{\infty} \lambda_i^2 L_i^{2\rho} |v_i(x)|^{2(1-\rho)} \right| < \infty.$$

Then $U \in C([0, T], C(\mathcal{B}))$, whenever $U_0 \in C(\mathcal{B})$.

Gradient flows for the stochastic Amari neural field model

The stochastic Amari neural field model

The stochastic PDE
Typical behavior in 1D

\(\mathcal{B} = [-80, 80] \), \(J \) centered Gaussian with standard deviation \(= 0.05 \),

\(f(s) = (s + 1)(1 - s)(s - 0.1) \), \(\alpha = 0.1 \), \(\epsilon = 0.5 \) with space time white noise, \(u(x, 0) = 0.8 \)
Section 2

A gradient flow formulation
Gradient flows

In fact even for $\varepsilon = 0$, it was previously not known, whether one can find a gradient structure to rewrite the PDE as

$$\partial_t u = -\nabla_X F(u), \quad u(\cdot, t) = u(t) \in \mathcal{X},$$

where \mathcal{X} is a suitable function space — Hilbert, Banach, or metric space (see e.g. [Ambrosio, Gigli, Savaré, *Birkhäuser* (2006)]) — and where

$$F : \mathcal{X} \to \mathbb{R}$$

is a functional, which has often the natural interpretation of an energy, entropy or some other physical notion.

As seen in [Kuehn, Riedler, *J. Math. Neuroscience* (2014)], the naïve guess

$$F(u) := \int_B \left[\frac{\alpha}{2} u(x)^2 - \int_B \int_0^{u(x)} f(r) w(x, y) \, dr \, dy \right] \, dx$$

in $\mathcal{X} := L^2(B)$ fails to produce the desired formulation.
Recall: \(K \) is trace-class, nonnegative definite, self-adjoint. Hence:

- The spectrum \(\sigma(K) \) is discrete with zero being its only accumulation point.
- There exists an orthonormal basis \(\{e_i\} \) of eigenvectors in \(L^2(B) \) such that the eigenvalues \(\lambda_i \in \sigma(K) \setminus \{0\} \) satisfy w.l.o.g.

\[
\lim_{i \to \infty} \lambda_i = 0.
\]

We have the orthogonal decomposition

\[
H = \text{Ker}(K) \oplus S
\]

where \(S := \text{Ker}(K)^\perp = \text{span}\{e_i\}_{i \in \mathbb{N}} \).

On \(S \) becomes a separable Hilbert space (denoted by \(H_{-1} \)) with norm

\[
\|u\|_{-1} := \|K^{-\frac{1}{2}}u\|_H \quad u \in S,
\]

where \(K^{-\frac{1}{2}} \) is the Moore-Penrose pseudo-inverse of \(K^{\frac{1}{2}} \).
Let \(\varphi : \mathbb{R} \to \mathbb{R} \) be any \textbf{primitive function} of \(f \), i.e. \(\varphi' = f \). Set
\[
\Phi(u) := \int_{\mathcal{B}} \varphi(u(x)) \, dx \quad u \in H,
\]
and let
\[
\Psi(v) := \frac{\alpha}{2} \|v\|^2_{-1}, \quad u \in S.
\]

Lemma

\(\Phi \) is well-defined, finite for all \(u \in H \) and continuous in \(H \). Furthermore, we have that
\[
D\Phi(u)h = (F(u), h)_H, \quad u, h \in H,
\]

where \(D\Phi(u)h \) denotes the \textbf{Gâteaux-directional derivative} of \(\Phi \) in \(u \) in direction \(h \).

Gradients

Gradient flows for the stochastic Amari neural field model

A gradient flow formulation

Change of ambient space
Furthermore, set $\Theta(u) := \Psi(u) - \Phi|_S(u)$, $u \in S$.

\begin{lemma}
For $u, h \in H_{-1}$, we have that

$$D\Theta(u)h = \alpha(u, h)_{-1} - (KF(u), h)_{-1},$$

where $D\Theta(u)h$ denotes the Gâteaux-directional derivative of Φ in u in direction h.
\end{lemma}

However, in our situation, F is not assumed monotone.
Inhibition and excitation

Remark

In the case that K is nonpositive definite, we can redefine H_{-1} by replacing K by $-K$ in the definition. Now, by changing the sign for Θ above, we obtain a gradient by a similar procedure. We can interpret the case of nonnegative definite symmetric kernels as domination by *excitation*, while the case of nonpositive definite kernels corresponds to domination of the *inhibition* effects.
Gradient flow formulation

Let \(\{W_t\}_{t \geq 0} \) be as above. Let \(B \in L(H, H_{-1}) \). Consider the gradient flow SPDE

\[
dV_t = -D\Theta(V_t) \, dt + \varepsilon B \, dW_t, \quad V_0 = v_0 \in H_{-1}.
\]

Assumption

Assume the regularity condition

\[
B \in L_2(H, H_{-1}) \quad \text{and} \quad BK^{-1} \in L_2(H_{-1}, H).
\] \hspace{1cm} (*)
Gradient flow formulation (noise regularity)

In the simpler case that B is diagonalized w.r.t. $\{e_i\}$ with eigenvalues $\{b_i\}$, i.e.

$$Be_i = b_i e_i, \quad i \in \mathbb{N},$$

we have that K and B commute and the second assumption in (*) can be dropped.

Clearly,

$$\{b_i^2 \lambda_i^{-1}\} \in \ell^1 \iff B \in L_2(H, H_{-1}).$$

In this case,

$$BW_t = \sum_{i=1}^{\infty} b_i e_i \beta^i_t,$$

with $\{\beta^i_t\}_{i \in \mathbb{N}}$ independent standard Brownian motions on $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P})$.

One possibility is to set $B := K$, which corresponds to the continuum limit of a neural Langevin equation, see [Bressloff, J. Phys. A (2012)].
Gradient flows for the stochastic Amari neural field model

A gradient flow formulation

Change of ambient space

Gradient flow formulation (invariant subspace)

Theorem (Kuehn, T. (2019), invariance of the subspace H_{-1})

For B and K satisfying (*), there exists a unique mild solution \(\{V_t\}_{t \geq 0} \) in H_{-1} such that, in particular, for $v_0 \in H_{-1}$, we have that $V \in L^2([0, T]; H_{-1})$ \mathbb{P}-a.s. and there exist constants $C_1, C_2 > 0$ with

$$
\mathbb{E} \left[\sup_{t \in [0, T]} \|V_t\|_{-1}^2 \right] \leq C_1 \|u_0\|_{-1}^2 + \varepsilon^2 C_1.
$$

In particular, the mild solution in H_{-1} coincides with the mild solution in H for initial data in H_{-1}.

$$
C_1 = 2 \exp \left(2 \left(|f(0)| + \text{Lip}(f) \|K\|_{L(H)} - \alpha \right) T \right),
$$

$$
C_2 = C_1 T \left(\kappa \|B\|^2_{L_2(H,H_{-1})} + \|K^{-1}B\|^2_{L_2(H,H_{-1})} \right),
$$

with $\kappa = \kappa(C_1, T) > 1$.

Proposition

Let B and K satisfy (\ast). If for fixed $\omega \in \Omega$, $t \mapsto BW_t(\omega)$ is càdlàg in H_{-1} and $BW(\omega) \in L^2([0, T]; H_{-1})$, we have for any initial datum $v_0 \in H_{-1}$ that the path $t \mapsto V_t(\omega)$ is weakly continuous in H_{-1} and strongly right-continuous in H_{-1}.
Gradient flows for the stochastic Amari neural field model

A gradient flow formulation

Invariant measures

Invariant measures

Let \(\{W_t\}_{t \geq 0} \) be a cylindrical Wiener process with values in \(H \). Consider solutions to the equation

\[
dX_t^{z,\varepsilon} = (AX_t^{z,\varepsilon} + D\Phi(X_t^{z,\varepsilon})) \, dt + \varepsilon \, dW_t, \quad X_0^{z,\varepsilon} = z \in H_{-1},
\]

with \((Au, \cdot)_{-1} := -\alpha(K^{-1}u, \cdot)_H\) (which is the generator of a \(C_0 \)-semigroup \(\{S_t\}_{t \geq 0} \) on \(H_{-1} \) which is the restriction of a \(C_0 \)-semigroup \(\{S^0_t\}_{t \geq 0} \) on \(H \)).

Recall that \(D\Phi(u)h = (F(u), h)_H, \ u, h \in H \).

Remark

We may w.l.o.g. assume that \(t \mapsto \int_0^t S^0_{t-s} \, dW_s \in C([0, T]; H_{-1}) \) \(\mathbb{P} \)-a.s. as the semigroup \(\{S^0_t\}_{t \geq 0} \) is *analytic*.
Invariant measures (existence)

Define the transition semigroup

\[P^\varepsilon_t G(z) := \mathbb{E} \left[G(X^\varepsilon_t z) \right] \quad t \geq 0, \ z \in H_{-1}, \]

where \(G : H_{-1} \to \mathbb{R} \) is bounded and measurable.

Theorem (by applying results from [Zabczyk, *SPDEs and Appl. II* (1989), Da Prato, Zabczyk, *Cambridge Univ. Press* (1992)])

Assume that \(B = K \). Then \(\{ P^\varepsilon_t \}_{t \geq 0} \) is strongly Markovian and symmetric with respect to its invariant measure, which exists and takes the following form

\[\mu^\varepsilon(dz) := \frac{1}{Z^\varepsilon} \exp \left[2\varepsilon^{-2}\Phi(z) \right] \gamma^\varepsilon(dz), \]

where \(Z^\varepsilon := \int_{H_{-1}} \exp \left[2\varepsilon^{-2}\Phi(z) \right] \gamma^\varepsilon(dz) \) and \(\gamma^\varepsilon \sim N(0, \Gamma^\varepsilon) \), where \(\Gamma^\varepsilon := 2\varepsilon^2 \alpha^{-1} K \).
Invariant measures (uniqueness)

Theorem (Compare with [Maslowski, *Stoch. Systems and Optim.* (1989)])

Assume that $B = K$. Then μ_ϵ is strong Feller in the restricted sense (⇒ asymptotic strong Feller) and thus unique, and the semigroup $\{P_t^\epsilon\}_{t \geq 0}$ is ergodic.

Possible applications:

- Large deviation principle / small noise asymptotics,
- Kramers’ law, (see e.g. [Berglund, *Markov Processes Related Fields* (2013)]),
- Kolmogorov operators / Fokker-Planck equations.
Final remarks

Possible extensions:

- the situation of $\mathcal{B} = \mathbb{R}^d$;
- multiplicative noise;
- locally Lipschitz gain function f;
- improved estimates for more specific f like $sigmoid$ or $tanh$;
- indefinite kernels K (however, with dominating positive or negative spectrum).
S. Amari.
Dynamics of pattern formation in lateral-inhibition type neural fields.

N. Berglund.
Kramers’ law: validity, derivations and generalisations.

P. C. Bressloff.
Spatiotemporal dynamics of continuum neural fields.

O. Faugeras and J. Inglis.
Stochastic neural field equations: a rigorous footing.

The variational formulation of the Fokker–Planck equation.

C. Kuehn and M. G. Riedler.
Large deviations for nonlocal stochastic neural fields.

C. Kuehn and T.
A gradient flow formulation for the stochastic Amari neural field model.

B. Maslowski.
Strong Feller property for semilinear stochastic evolution equations and applications.

H. Wilson and J. Cowan.
A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue.

J. Zabczyk.
Symmetric solutions of semilinear stochastic equations.

Thank you for your attention!