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.1 Meotivation .. ="~ 3/41

Consider thei.s"c.b'cishé‘s'tic 'inncbbmypressi-blé“QD» Navier-Stokes ‘_'.e_q}l_l_'atilons (NSE) with
additive Wiener noise on a bounded domain OCIR?, viscosity v >0,

 dX=pAX,+ (X V)X]dt+BdW, t>0,
W0 i N
Xo=zc L (O R =1 H,

with no-slip boundary condition X; =0 on 00O.

By the spectral Galerkin method, if BEHS(H) and if {W;};>0 is a cylidrical
Wiener noise modelled on H, there exists a unique Markovian strong solution

X* e Li([0,T] x ; Hiy o(O; R2)).



Loc-ﬂallymonOtQhedrvift.SPDES . T

The 2D NSE is an example of a /oca//y monotone dr/ft SPDE

[et b & F = H* & v be a Gelfand trlple

V' separable, reflexwe Banach space H separable Hllbert space.

A: V—> V* -is called monotone if there exists K € R,
(Alw) = Alw)u—vy = Kflu-—ullg,  u,vel

f H=V =R, f: R— R is monotone iff :tr—>-f(a:) — Kx is non-increasing.

A is called locally monotone in V' if there exists p: V — IR, locally bounded and
measurable, and K € IR, such that

(A(u) — A(w),u—v) < (K + p(u))Hu —wllg, w,veH.



'/ij.Uf-r;tv-her-iexa‘f‘mples o S

Furfhef exarrvloléswof Iocally‘ v.r’noootone drlft SPDEé
- “Stochastlc power—law quud equat|ons -
® Stochastlc Allen Cahn equatlon
o Stochastlc Burgers equatlon _’ o

Non- monotone perturbatlons of monotone drlft SPDEs
o ‘Stochastlc p—LapIa_ce equation | |
e Stochastic porous médium—type equations

(not covered by our ergodicity ”rve'sul‘lt) |



_ Stochastic power law fluids

6/41

Further examples of Iocally monotone drlft SPDEs

. Stochastlc power—law quud equat|ons on (’)CRd p E (1 oo)

ax=[v. s<‘< X))+ (X v>xt]dt+3dwt, t>o,’

'V--Xt: y tZO,

Ni— e LSOI(O; RY),
where |
= ol o B
e(w)i,j:= 5 (O + Ouy),
and |

ol | + [z’)p_Q



StOCh aStIC . ,pOWé‘HaWﬂ‘Uid‘s e - o

Further examiples ’,O”f Iocally monotone drlft SPDEs

pE(l oo) d 23

3 Stochastlc power—law qusd equatlons on (9 le_-

p>a i1fa , mpdy e Gial O
dilatant, or shear—thlcken/ng . pseudop/ast/c or shear—th/nnlng Newtonian, Navier-Stokes equations
oobleck e ; Aha>|r gel, bvlood ‘whipped cream 3 ‘Examples water, glycerol, etha_nol

(mixture of water and corn-starch) ~ (polymeric molecules) viscous stress o local strain rate

— ‘
N /
o~ ™

Image source: Rachel Grosskrueger (CU Boolder) R ; Im‘age source: Shutterstock Image source: TROUT55/Getty Images



Stoché_St.i‘c«AlIen‘-;,C;ahn equat'ion3 e o

Further examples of Iocally monotone drlft SPDEs

e Stochastlc Allen Cahn equatlon on (’)C]Rd d 1 2 3
o dX, [mxﬁ g(Xt)]dtJrB dvv;, | }o, |
¢ - XO:CCE[P(O). S
Typﬂice.lly,,"g:‘(z) :'}; — 23. |
e Stochastic Burgers equation on OC]Rd, d= 1123
AXi— [VAX, LN G A BV 50
o Xo=z € L¥O).

1D stochastic Burgers, d=1, f(z) =



 Mainguestion. = o

| Ex1stence and unlqueness of squtlons to the examples for any f|n|te B LT
T =1 have been discussed in L|u Réckner [LRlO] ;

What about T—> oo? :‘:'7' .

Replacing the noise B dW by a determlnlstlc forcmg f E LSOI, the 2D NSE with
no-slip boundary condltlon is known to have exponentlal convergence to the
stationary solution [Tem01], when the viscosity is large enough relative to
constants depending only on the domain, the first eigenvalue of the Stokes
operator, and the L2 -norm of the deterministic forcing f.

Without forcing, the solution has expo,nential decay to zero.

What about the stochastic case?



2"'lh,V.a’riant.;‘measures i o 10/41

Set PtF( ) v E[F(Xt )] t>0 FEBb( ) :EGH and deflne Pt by duality

: <Pt,LLaF> '<PtF >7 t>0 ,LLEM( ) FECb( )

Deflnltlon 1 A probab///ty measure ,u = /\/ll( i is- sa/d to be invariant for {P;}
i P= ,uforeveryt>() = T

{Pt}t>0 is called Feller if Pt(Cb( )) C Cy(H) for every t > 0.

{P,} is called weak* mean ergodic if for some invariant measure [,

1t v
T/ Ptydt ,u, asy 1I'— 00
0 ;

for every v € M(H) which is equivalent to the u'niqu‘eness of 1.



Krylov-Bogoliubov theorem

Proposntlon 2 (Kry/ov—Bogo/Iubov) . .
If for a Fe//er sem/group {Pt} and some T = H tn / 0, M = Ml( ),

' tl/ Law(Xf)dSA/J Tl
mJo o o
then ,u is an invariant measure for {P.}.

Remark 3. This method can be used to prove that the stochastic 2D NSE
with additive Gaussian forcing admits an invariant measure by standard a priori
estimates. '



Strong Feller property =

Defi'iﬁ‘it'ionfv4‘. A Fe//ersem/group {Pt} i"s‘-‘said,_\to have the strong Feller property if

 P(By(H)) CCy(H) forevery ¢>0.
A Feller sem_;i,g(o’u,p {Pt} is said to be irreducible if for ﬁ‘»e've'ry t >0 and for every
x € H and for every non-empty open set O C H, |

Pt]]_O(ZC) > 0.

Theorem 5. If {P,} is strong Feller and irreducible, it admits a unique invariant
measure (i such that for every x € H

|‘Pt*5:1;_,LLHTV_>O as =00,



TiAmeIine"(SOFTIe highlights) . s

In 1995 [FIandoIr I\/Iaslowskl] proved the strong FeIIer property and irre-
duublhty of the stochastlc 2D NSE with non- degenerate Gau55|an noise.

In 2001 2002 ‘the (exponentlal) ergod|C|ty of the stochastic 2D NSE with
either non-degenerate forcmg or large wscosrty v was proved by Bricmont,
Kupiainen, and Lefevere [BKL02]; E, Mattlngly and Sinai [EMSO01]; Kuksin
and Shlrlkyan [KSO01]; Mattingly [Mat02]

In 2002 the general well- posedness theory for the stochastlc 2D NSE was
| dlscussed by Menaldi and Sritharan [MS02].

In 2006, Hairer and Mattingly [HMO6] provided a minimal non-degeneracy
condition of the noise for the asymptotlc strong Feller property and weak
irreducibility.

And many others ...

Recently, there has been a lot of progess for multiplicative noise, Lévy noise,
pure jump noise, and coupling techniques.



: HypOelllptIC Settlng o | 14/41

Halrer and Mattmgly [HI\/IO6] [HI\/IO8] lntroduced the asymptot/c strong Feller
property WhICh admlts the followmg suff|c1ent condltlon

Proposutlon 6 Let tn/oo and 5n\0 and C: [O oo) —>]R nondecreasmg Then,
{P} is asymptotlcally strong FeIIer /f for all p € Llpb(H)

\VPt 90( )I<C(Hﬂf|!)(Ilv\loo+5n\|V90lloo) weH, e

Definition 7. {P,} is called weakly irreducible if for every x,y € H there exists
z € H such that for any z € O C H open, there exists s,t >0 with

Plols )>O and Plo(y) > 0.

Theorem 8. Weak irreducibility + Asymptotic strong Feller = Unique ergodicity.



Vorticity formulation ~— wm

For‘ft_he_Stoc’has"ficﬁ‘:f 2DNSE onthe torus T? = [—m, 7% in ‘_'\_'_/_o,r}ti_c_ity formulation
 dv=[pAvtu Voldt+ B

where v = (92?(111 - O1u? is the vort|c1ty and u the "\)'e‘l'o‘cify‘ (Which can be recovered
by the Biotg_:‘S_ay‘arvt formula), one considers additive nOise of the form }

BdVVt:Zk Bhkdﬁf where {35}, kéZz\ {(0,0)} are i.i.d. standard Brow-
nian motions in IR, and { Ay} is the standard orthonormal basis (ONB) for L*(T")

.9 sin(k &) ke Z3 >
hk(f){COS(k-f), Kl



I\/Iinima'I-H_,non+degeneracy conditiOn - 16/41

Let ZO be a flnlte dlmen5|ona| subset of Z2 \ {(O O)} W|th
Bhk—() When k%ZO and Bhk#—OWhen kEZO e

The main result of [HMO6] is the followmg m|n|ma| non- degeneracy condltlon

Theorem 9. Assume that Z,C 22 \ {(O O)} is symmetr/c and finite dlmenSIona/
such that

i There exist at least two elements in Zy with different Euclidean norms.
ii. Integer linear combinations of Z, generate Z>.

Then the stochastic 2D NSE in vorticfty formulation admits a unique invariant
measure. |

Example 10. Z,={(1,0),(~1,0),(1,1), (—1,~1)}.



I\/I||d degeneracy o AT

Denote by P the Galerkln prOJectlon on the first n Fourler modes. If the noise
coefficient B is mildly degenerate that is, B < HS(H) and for every v >0, there
exists N = N( ||I||HS(H)) such that |f g

- Rg(B)DP(H)

for some nZNthen the stoch’astic 2D NSE admits a 3unique invariant measure,
and the Foias-Prodi estimate holds in the stochastic case for some C' = C(z, y,
B,0,v)>0, and 0 =0(B,O,v) >0 such that

Efllxe - X5 < Ce

see e.g. [GMR17]. Thus, we get exponential mixing. The estimates rely on the
properties of the exponential martingale.



. Moepeeerty. = e s

Deflmtlon 11 A Fel/er sem/group {Pt} is sa/d to satlsfy the e—property if for
every ¢ E Llpb( o for every x € H, for every e > O there ex:sts g O such that

Beola) = Piotull <2

for every ¢ ZOandfor every y € H with e —y|| <6 |

This ‘type of uniform equicontinuity for bounded Lipschitz functions could be
viewed a coupling condition at infinity. |

It has been conjectured by Szarek and Worm [SW12] that

‘It seems that all known eXampIeS of Markov processes with the
asymptotic strong Feller property satisfy the e-property as well.”

Jaroszewska constructed a counter-example in 2013 in an unpublished preprint.



The‘,‘lOWer _bOju,nd technique”' & o

Orlglnally developed by Lasota and Szarek [LSO6] the ° Iower bound technique”
can be descrlbed as follows in the Work of Komorowskr Peszat and Szarek [KPS10].

Theorem 12 Assume that {Pt} is Feller and has the e—property Assume that
there exists z € H such that for every bounded set J C H and every 0 >0

inf 11m1nfl/ PtILB(Z,(;)(:E)dt >0

reJ T—oo T

Suppose further that for every € >0 and every x € H there exists a bounded Borel
set K C H such that

T—>OO T

| . |
liminf — 1 / Blpl(r)dt>1—¢.

Then there exists a unique invariant probab///ty measure (i for {P;}, and {P;} is
weak* mean ergodic.



3 Mainresult e

Cohfs_i'de_k

A(X) dt +dby, $50, Xo=ag .

where the additﬂi}ve‘Lévy f "nvoi_'s;e’, is vgi'v.en‘ by the .It'cf:)_,’iinérem»ent of

w2 e
{llzll<1}

where {BW,} is as befgre (i.e., {W;}is 2 cylindrical Wiener process on H

and Be HS(H)), and N((0,t] x U)=N((0,¢] xU) —tx(U) is an independent
compensated Poisson random measure with o-finite intensity measure 7 on
B(Z), where Z is a Banach space, such that w({||z||>1}) < oo (large jumps).

Let G: Z — H be strongly measurable with f{”2”<1}HG(z)H% Tao) < 00

As we consider just small jumps, {L;} is a martingale.



HYPOthese;S}Qn“"the drift- o T

The drlft A V—> V* is hem/contlnuous (| e, weakly contlnuous along rays) and
fora>2 51>O uEV ‘ e . ‘

L Sl 0 <alulf <¢aémmy>: '
andfor(52>0 Cg>0uv€V ” o .
| 2<A(u) . A(v),u —‘v> < (=02 + p(u))Hu —vll%, | ‘»(vlo'cal mo'notonicity)‘
where for 3 >0 ' |
0< p(u) < Collulff Jullfi weV.

Moreover, for K >0, uelV,

(0%

| A(w) |5 " <K (1 4+||ul|§)(1 +Hu\|§) (boundedness).




Existence -}__and un i.q,ueness of | solutions | 22/41

Liu and Rockner (for Wlener nOIse) [LRlO] and Brzeznlak L|u and Zhu (for Lévy
noise) [BLZl4] proved the followmg e -

Theorern . 13 Under thel previous hypotheses; fo}every inifia/ datum
zo € LA+, Fo. P H) .
the‘re'”exisis..a unidue strong adapted cadlag solution { X} ‘With
X e L¥([0,T]; V) NI([0,T}; H) P-as
such that every progressively measurab/e Vvalued version of X satisfies (1) P-a.s.

Note that our assumptions are intentionally not the most general ones, and
exclude e.g. the stochastic p-Laplace equation, p # 2, or time-dependent drift.



Non-standard hypothesis on the drift = 2

Ass‘ume_ also that there exist 54> 0 and ;C;; € R such that 'fo.'r__'alll ueV,

 2{A(w)u) Cy— iAW)y~ (conecondition).

Remark 14. This condition is satisfied for the 2D NSE and the power law fluid
equations. Unfortunaftely, it is quite restrictive for semilinear equations with drift
A= Ay + F because it forces the nonlinear perturbation F' of the dissipative
principal term Aj to have at most quadratic growth.

For this reason, our result does not cover stochastic Allen-Cahn equations with
cubic nonlinearity.



Non—stan'da?rd-:;hypothesis on the noise =~ ava

Assume that f{” ”<1}|IG( )||5+,2 -‘ (dz)<oo and that {Lt}has the cylindrical
representatlon e e s

where e, € V k EJN form an ONB of H, {\p}el! and {lt} are i.i. d symmetric
Lévy processes in IR with finite second moments.

Moreover, assume that for some ||ex||v<\/o) with {A\rop } c /1 it holds that
HZ V‘)\keklf"l%ﬁz Ao | 1P
k=l o el

If V' is a separable Hilbert space, it is sufficient to assume that {llex]lv ex} is an

ONB of V.



SMainresylt . e 25 /41

Remark 15 If G O and V |s a separable Hllbert space the previous assump-
tions are equuvalent to assumlng that B € HS(H V) - |

The symmetry and addltlonal regularlty of the Levy process is needed to prove the
small ball property in V ' : -

Theorem 16 ' (B'arrera, T., arXiv:2412.01381) Under the previous hypotheses,
the semigroup associated to (1) is Markovian and Feller, and satisfies the e-
property and is weak™ mean ergodic. The unique invariant probability measure (i on
(H,B(H)) admits finite (o + 3)-moments in H. If 3=0, u admits a-moments
inV. o b

The existence and uniqueness of 14 is proved by the e-property and the lower-bound
technique.



Ergodicity of the 2D NSE= | 2o

Theorem 17 Under the hypotheses on the noise, the stochast/c 2D NSE with
additive Levy noise adm/ts a un/que invariant measure W/th fm/te fourth moments.

In particular, we cover the case of O = T? and e.g. Zo={(1,1)} (2 Fourier
modes), Zo— {(1 0)} (1 Fourier mode) or Z= () (the'deterministic case), etc.

We point out that ergod|C|ty and exponential mixing of passive scalars advected the
velocity of the stochastic 2D NSE for less than 4 modes has been proved recently
by Kooperman and Rowan [CR24] for initial data in H2, o(T?, R?).

Our result is true for all > 0 and for initial data in L2;(O, R?), however, we do
not obtain a convergence rate. \We get weak convergence of the time-averages of
the law. Mixing for all ¥ >0 and degenerate noise is an open problem.

64 ‘ Pl i ' 7
| Iere, U)=—= 2 : 52 — VCQ, Where Co IS the INVEerse Fomcare constant Of O
13 1 0] 0.
SO 7




Ergodicity of ?the power'law quideqUati-On  am

We also get ergod|c1ty for the shear—thlckenlng stochastlc ‘incompressible power
EWY ﬂwd equatlons Wlth addttlve Levy noise (the oobleck case ) -

Theorem 18 Under the BypotheSes on the noise, 'the stochastic power law
fluid equation for p Sl 2 with addltlve Levy no:se adm/ts a unique invariant

measure with finite ' 2 —th moments.



4 ",_S'ket‘ch o'f[“the e L T

We flrst need to verlfy the e—property

By a Galerkln apprOX|mat|on Ito's Iemma and the Burkholder—Daws Gundy

inequality, we obtaln the followmg a priori e5|mate for some constant C > 0,
not depending on T> 0, and smaII enough *y 5 O

OLtLT

1 ' +9 '
28] o HXtHW]Mlﬁ E / DX

|| zo||**+2e~7"] + %(1 —et = Bl 24

7
For the 2D NSE, these types of estimates are well-known. In particular, applied

for 3 =0, we obtain the existence of at Ieast one invariant measure by the Krylov-
Bogoliubov theorem.



. Theepreperty = = o

ReCaII' -

Deflmtlon 19 A Fel/er sem/group {Pt} is sa/d to sat/sfy the e—property it for
every p € Llpb(H ) for every x € H, for every & > O there exists & >0 such that

Puola) ~ Pol)l <& .

for every t 2 0 and for every y € H s |l —y||<d. -
Naive proof. , |
|Prp(x) — Prp(y)| <l @l L BT XT — X771

Note that if A is monotone, we get that

E[|| X7 — X¢ ||#)=llz - y”l%l—l—Q]E/ (A AR R XE — X Vds <[z —y |7
/



Naive idea: Gronwall lemma 30/41

Note that becausewehave é*dtcfl.itiv.e'vndiSe', for 0 << 09, by local monotonicity,

e =yl -7+ Ca [ N DIXE — XPIR(C — 8 + IXIPIXEIR)
e L Ve e Py |

Hence by‘gth”e Gronwall lemma,
B X5 - XLB+(62— 1) E / 1D X7 — XV ||3dt
i E[exp(cz / e”“‘”\lell%l\Xf\lﬁdt)]
§] , !

However, we do not have any control over the mean exponential.



| StochaSt,i,C“Gronwall"I,emma [AV24]- . s

Theorem 20. Let s > O /et hé s stopp/ng time W/th va/ues in |s,00). Let X,
Y, fils,7) Q=0 oo) be progressively measurable processes such that a.s. X
has increasing and continuous paths, a.s. Y € Li.([s, 7)), and a.s. f € L'(s, 7).

Supposet that there exist constants 77 = O and C >1 such that for a// stopping
t/mess<)\<A<T ' i

+E/ it <C(E[X <A>}+n>+E[ +n/f dt]

Then X (1) + f Yot dt is finite a.s. and for every e >0, R>0,

p(xtrr+ [ v <) < Ceenggrxions o+ p{ [ i),

5,

Note. This enables us to dispense with exponential martingales.



Application of the stochastic Gronwall lemma =/

Rec‘a_llz fdr O< 7< 52 : ‘ .
,u;f{ SuP ”)Qf;:)ﬁ?“%?f =; ~:f~

il'ro<t<T

O<t<T’~

, <ux = yuH +02 sup | X7 — XP1 [ eemixeip e
o ’ DN e e
N'ov'\'/,.'by;vthe"' stochastic Gronwall lemma [AV24], and the Markov inequality,

2
]P( sup HXt XyHH+ (02 — / HXt XyHHdt>—>
0<t<T 9o ||uis

_36 e deal 0
<= llelLime 4R!Ix—y|\%+§E{02/0 D) X713 )| X |y§dt].



L

Recall the a pI’IOH estlmate .

- &
67 g HXt “VHXt HHdt < HfEHﬁH"‘; '

5+2

Hence, for fixed = and for anyT>O by choosmg swtable R>O and 5>O recalllng
that HZIZ_?JHH<5 |

Paol(a) —Pt¢<y>|s—+2||souooﬂ>( b —X;fu%fz—)
=3 0<t<T 9|| & || Lip

30 o : 1 . z 2 |l T
<=+ 2o Selfne o - ol 5| o [ Dzl X )

36 e C
<& + 2ol Dol + 5 A% (e €Y )<

OO



. Stochastie stability= = | wa

Consider the determin istic »»c&ujhterp’art('to s
© dup=Addt, >0, ub=z, -

and note that 'b'y" coekcivity, forfeVery_R} O

lim sup |Juf||z=0.
b ldllBsR .

Let us prove that for any’T> 0, for any ¢ >0, and any K C H bounded, we have
P(|| XF - up|lf<e) >0,

uniformly for x € K.



To prove th|s stochastlc stablllty for fmlte times with p05|t|ve probablllty, we
T pathW|se argument to estlmate ||Y; —-ut||H, Where Y; . Xt — L{ is the
solution to the random PDE | . . 5

To control the error terms with p05|t|ve probability, we need the small ball property
of {Lt} in V, that is, ‘ |

1z>< i HLt||V<5> > 0.

Ot <1

which we can prove for symmetric Lévy processes in V. For the pathwise argument,
we also need the non-standard assumption that there exist 4, >0 and C; € R such
that for all u €V, '

2 A(u), u) < Cy— &4l Ay




The “lower bound contd= . wa

Wesbtlns.

» P( SU.p HXt _ut”H<€) -
L el .

: Zﬂ’( sup ||V _'utHH<_ sup HLtHH<4)>O-

o<t _ 4 Qi<

However, in e estimates for Supo<t<THY,} — uf||%, we in fact need the stronger
requirement '

0T,

ﬂ?( D |\Ltu2v<5)>o,

and an application of the stochastic Gronwall lemma.



The lower bound contd= . v«

Novy, ':for e\/er:y, 5>Oand every z EK i -t’he‘re exists 71 > Oand TO > () such that
PT1135<0>( 7= <|~XT0||H<5> > zP( HXTO . uTOHH<§) > 7150,

By a well- know trlck used for mstance by Es- Sarhlr and von Renesse [EVR12] we
may use the Markov property of the semlgroup (shlftlng by 1p) to obtain

l;rglorcl)f 7{/ Pt]135 (@ )dt>1¥210r<1)f71;/0 Plg(x)dt > 0.
Here, we have also used that the coercivity implies for every € >0 and every
bounded set .J, there exists a bounded set /' with

alzrelf,] 1¥210r<l>fT/ Pt]lK(a;)‘:dt >T—&



- _,ATF.inaI,remarks e o

Thus the COﬂdItIOﬂS of Komorowskl Peszat and Szarek [KPSlO] can be verified.

This proves our mam result The moment estlmates follow from our a priori esti-
mate and the fact that V C H Is a contlnuous hnear embeddlng

Theorem 21. ( Barrera T arX/v 2412 01381 ) Under the previous hypotheses
the semigroup associated to (1) is Markovian and Feller, and satisfies the e-
property aind is weak* mean ergodic. The unique invariant probability measure ji on
(H,B(H)) admits finite (o + 3)-moments in H. If 3=0, u admits a-moments
inV. '

Remark 22.

e Due to our method, our proof is restricted to locally monotone equations, where
p depends only on one variable and not on both (fully locally monotone).

e The V-regularity and symmetry of the noise are technical assumptions.



_Wr,a'PTUfPi:‘a‘nd- )Q.P.efn*problems e AT

We have proved the ergodmty of IocaIIy monotone drlft SPDEs with

Wiener noise plus mdependent symmetrlc Poisson noise with spatial reg-

"'ularlty in the more regular space V' W|thout usmg ‘exponential mart/nga/es

This extends the known results for stochastlc 2D NSE for all v >0 by
~anew ‘minimal condition on the Fourier modes of the noise and by the
Ponsson part. Ergod|C|ty for mildly degenerate Lévy noise is well- known

; Other examples are the stochastic power law fluid equatlons for p >
2, the stochastic heat equatlon and the stochastic 1D Burgers
equation.

Semilinear SPDEs like the stochastic Allen-Cahn equation, and fully
locally monotone SPDEs like the stochastic Cahn-Hilliard equation

are not covered by our results, nor is the stochastlc p-Laplace equa-
tion. '

Mixing and quantification of mixing tlmes remain an open question in this
general situation.
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