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1 Motivation 3/41

Consider the stochastic incompressible 2D Navier-Stokes equations (NSE) with
additive Wiener noise on a bounded domain O�R2, viscosity � > 0,

dXt= [��Xt +(Xt �r)Xt]dt+B dWt; t > 0;

r�Xt=0; t� 0;

X0=x2Lsol
2 (O;R2) :=H;

with no-slip boundary condition Xt=0 on @O.

By the spectral Galerkin method, if B 2HS(H) and if fWtgt�0 is a cylidrical
Wiener noise modelled on H , there exists a unique Markovian strong solution

Xx2LW2 ([0; T ]�
;Hsol;0
1 (O;R2)).



Locally monotone drift SPDEs 4/41

The 2D NSE is an example of a locally monotone drift SPDE .

dXt=A(Xt) dt+B dWt; t� 0:

Let V �H�H��V � be a Gelfand triple.

V separable, reflexive Banach space, H separable Hilbert space.

A:V !V � is called monotone if there exists K 2R,

hA(u)¡A(v); u¡ vi�Kku¡ vkH2 ; u; v 2V :

If H =V =R, f :R!R is monotone iff x 7! f(x)¡Kx is non-increasing.

A is called locally monotone in V if there exists �: V !R, locally bounded and
measurable, and K 2R, such that

hA(u)¡A(v); u¡ vi� (K + �(u))ku¡ vkH2 ; u; v 2H:



Further examples 5/41

Further examples of locally monotone drift SPDEs

� Stochastic power-law fluid equations

� Stochastic Allen-Cahn equation

� Stochastic Burgers equation

Non-monotone perturbations of monotone drift SPDEs

� Stochastic p-Laplace equation

� Stochastic porous medium-type equations

(not covered by our ergodicity result)



Stochastic power law fluids 6/41

Further examples of locally monotone drift SPDEs

� Stochastic power-law fluid equations on O⊂Rd, p2 (1;1),

dXt= [r�S(e(Xt))+ (Xt �r)Xt]dt+B dWt; t > 0;

r�Xt=0; t� 0;

X0=x2Lsol
2 (O;Rd);

where

e(u)i;j :=
1
2
(@iuj+ @jui);

and

S(z) := 2�(1+ jz j)p¡2z:



Stochastic power law fluids 7/41

Further examples of locally monotone drift SPDEs

� Stochastic power-law fluid equations on O⊂Rd, p2 (1;1), d=2; 3.

p> 2 p< 2 p=2
dilatant , or shear-thickening pseudoplastic , or shear-thinning Newtonian, Navier-Stokes equations

oobleck hair gel, blood, whipped cream Examples: water, glycerol, ethanol

(mixture of water and corn-starch) (polymeric molecules) viscous stress / local strain rate

Im age sou rce : Rachel Grosskrueger (CU Boulder) Im ag e sou rce : Shutterstock Im ag e sou rce : TROUT55/Getty Images



Stochastic Allen-Cahn equation 8/41

Further examples of locally monotone drift SPDEs

� Stochastic Allen-Cahn equation on O⊂Rd, d=1; 2; 3:

dXt= [��Xt+ g(Xt)]dt+B dWt; t > 0;

X0=x2L2(O):

Typically, g(z)= z¡ z3.

� Stochastic Burgers equation on O⊂Rd, d=1; 2; 3:

dXt= [��Xt+ hf(Xt);rXti]dt+B dWt; t > 0;

X0=x2L2(O):

1D stochastic Burgers, d=1, f(z)= z.



Main question 9/41

Existence and uniqueness of solutions to the examples for any finite time horizon
T > 0 have been discussed in Liu, Röckner [LR10].

What about T!1?

Replacing the noise B dW by a deterministic forcing f 2Lsol
2 , the 2D NSE with

no-slip boundary condition is known to have exponential convergence to the
stationary solution [Tem01], when the viscosity is large enough relative to
constants depending only on the domain, the first eigenvalue of the Stokes
operator, and the Lsol

2 -norm of the deterministic forcing f .

Without forcing, the solution has exponential decay to zero.

What about the stochastic case?



2 Invariant measures 10/41

Set PtF (x) :=E[F (Xt
x)], t� 0, F 2Bb(H), x2H and define Pt� by duality

hPt��; F i= hPtF ; �i; t� 0; �2M1(H); F 2Cb(H):

Definition 1. A probability measure �2M1(H) is said to be invariant for fPtg
if Pt��= � for every t� 0.

fPtgt�0 is called Feller if Pt(Cb(H))�Cb(H) for every t� 0.

fPt} is called weak� mean ergodic if for some invariant measure �,

1
T

Z
0

T

Pt
��dt* �; as T!1

for every � 2M1(H) which is equivalent to the uniqueness of �.



Krylov-Bogoliubov theorem 11/41

Proposition 2. (Krylov-Bogoliubov).

If for a Feller semigroup fPtg and some x2H, tn%1, �2M1(H),

1
tn

Z
0

tn

Law(Xs
x)ds* � as n!1

then � is an invariant measure for fPtg.

Remark 3. This method can be used to prove that the stochastic 2D NSE
with additive Gaussian forcing admits an invariant measure by standard a priori
estimates.



Strong Feller property 12/41

Definition 4. A Feller semigroup fPtg is said to have the strong Feller property if

Pt(Bb(H))�Cb(H) for every t� 0:

A Feller semigroup fPtg is said to be irreducible if for every t > 0 and for every
x2H and for every non-empty open set O�H ,

Pt1O(x)> 0:

Theorem 5. If fPtg is strong Feller and irreducible, it admits a unique invariant
measure � such that for every x2H

jjPt��x¡ �kTV!0 as t!1:



Timeline (some highlights) 13/41

� In 1995, [Flandoli, Maslowski] proved the strong Feller property and irre-
ducibility of the stochastic 2D NSE with non-degenerate Gaussian noise.

� In 2001�2002, the (exponential) ergodicity of the stochastic 2D NSE with
either non-degenerate forcing or large viscosity � was proved by Bricmont,
Kupiainen, and Lefevere [BKL02]; E, Mattingly, and Sinai [EMS01]; Kuksin
and Shirikyan [KS01]; Mattingly [Mat02]; . . .

� In 2002, the general well-posedness theory for the stochastic 2D NSE was
discussed by Menaldi and Sritharan [MS02].

� In 2006, Hairer and Mattingly [HM06] provided a minimal non-degeneracy
condition of the noise for the asymptotic strong Feller property and weak
irreducibility.

� And many others . . .

Recently, there has been a lot of progess for multiplicative noise, Lévy noise,
pure jump noise, and coupling techniques.



Hypoelliptic setting 14/41

Hairer and Mattingly [HM06], [HM08] introduced the asymptotic strong Feller
property , which admits the following sufficient condition.

Proposition 6. Let tn%1 and �n&0, and C: [0;1)!R nondecreasing. Then,
fPtg is asymptotically strong Feller if for all '2Lipb(H),

jrPtn'(x)j�C(kxjj)(k'k1+�nkr'k1) x2H; n2N:

Definition 7. fPtg is called weakly irreducible if for every x; y 2H there exists
z 2H such that for any z 2O�H open, there exists s; t > 0 with

Ps1O(x)> 0 and Pt1O(y)> 0:

Theorem 8. Weak irreducibility + Asymptotic strong Feller) Unique ergodicity.



Vorticity formulation 15/41

For the stochastic 2D NSE on the torus T2= [¡�; �]2 in vorticity formulation

dvt= [��vt+ut �rvt]dt+ B~ dWt

where v=@2u1¡@1u2 is the vorticity, and u the velocity (which can be recovered
by the Biot-Savart formula), one considers additive noise of the form

B~dWt=
P

k
B~hkd�t

k, where f�tkgt�0, k2Z2nf(0;0)g are i.i.d. standard Brow-
nian motions in R, and fhkg is the standard orthonormal basis (ONB) for L2(T2)

hk(�)=

(
sin(k � �); k2Z+

2

cos(k � �); k2Z¡
2 ; � 2T2:



Minimal non-degeneracy condition 16/41

Let Z0 be a finite dimensional subset of Z2 n f(0; 0)g with

B~hk=0 when k2Z0 and B~hk=0 when k2Z0.

The main result of [HM06] is the following minimal non-degeneracy condition.

Theorem 9. Assume that Z0�Z2 n f(0; 0)g is symmetric and finite dimensional
such that

i. There exist at least two elements in Z0 with different Euclidean norms.

ii. Integer linear combinations of Z0 generate Z2.

Then the stochastic 2D NSE in vorticity formulation admits a unique invariant
measure.

Example 10. Z0= f(1; 0); (¡1; 0); (1; 1); (¡1;¡1)g.



Mild degeneracy 17/41

Denote by Pn the Galerkin projection on the first n Fourier modes. If the noise
coefficient B is mildly degenerate, that is, B 2HS(H) and for every � > 0, there
exists N =N(�;kBkHS(H)) such that, if

Rg(B)�Pn(H);

for some n�N , then the stochastic 2D NSE admits a unique invariant measure,
and the Foias-Prodi estimate holds in the stochastic case for some C =C(x; y;
B;O; �)> 0, and �= �(B;O; �)> 0 such that

E[kXt
x¡Xt

ykH2 ]�Ce¡�t

see e.g. [GMR17]. Thus, we get exponential mixing. The estimates rely on the
properties of the exponential martingale.



The e-property 18/41

Definition 11. A Feller semigroup fPtg is said to satisfy the e-property if for
every '2Lipb(H), for every x2H, for every "> 0, there exists � > 0 such that

jPt'(x)¡Pt'(y)j<"

for every t� 0 and for every y 2H with kx¡ yk<�.

This type of uniform equicontinuity for bounded Lipschitz functions could be
viewed a coupling condition at infinity.

It has been conjectured by Szarek and Worm [SW12] that

�It seems that all known examples of Markov processes with the
asymptotic strong Feller property satisfy the e-property as well.�

Jaroszewska constructed a counter-example in 2013 in an unpublished preprint.



The �lower bound technique� 19/41

Originally developed by Lasota and Szarek [LS06], the �lower bound technique�
can be described as follows in the work of Komorowski, Peszat and Szarek [KPS10].

Theorem 12. Assume that fPtg is Feller and has the e-property. Assume that
there exists z 2H such that for every bounded set J �H and every � > 0

inf
x2J

liminf
T!1

1
T

Z
0

T

Pt1B(z;�)(x)dt> 0:

Suppose further that for every ">0 and every x2H there exists a bounded Borel
set K �H such that

liminf
T!1

1
T

Z
0

T

Pt1K(x)dt> 1¡ ":

Then there exists a unique invariant probability measure � for fPtg, and fPtg is
weak� mean ergodic.



3 Main result 20/41

Consider

(1) dXt=A(Xt) dt+ dLt; t > 0; X0=x0;

where the additive Lévy noise is given by the Itô increment of

Lt=BWt+

Z
fkzk�1g

G(z)N~(ftg; dz)

where fBWtg is as before (i.e., fWtg is a cylindrical Wiener process on H
and B 2HS(H)), and N~ ((0; t]�U)=N((0; t]�U)¡ t�(U) is an independent
compensated Poisson random measure with �-finite intensity measure � on
B(Z), where Z is a Banach space, such that �(fkzk>1g)<1 (large jumps).

Let G:Z!H be strongly measurable with
R
fkzk�1gkG(z)kH

2 �(dz)<1.

As we consider just small jumps, fLtg is a martingale.



Hypotheses on the drift 21/41

The drift A: V ! V � is hemicontinuous (i.e., weakly continuous along rays) and
for �� 2, �1> 0, u2V ,

2hA(u); ui� �1kukV� (coercivity)

and for �2> 0, C2� 0, u; v 2V ,

2hA(u)¡A(v); u¡ vi� (¡�2+ �(u))ku¡ vkH2 ; (localmonotonicity)

where for � � 0

0� �(u)�C2kukV� kukH
� u2V :

Moreover, for K > 0, u2V ,

kA(u)kV �
�

�¡1�K(1+kukV� )(1+kukH
� ) (boundedness):



Existence and uniqueness of solutions 22/41

Liu and Röckner (for Wiener noise) [LR10] and Brzezniak, Liu, and Zhu (for Lévy
noise) [BLZ14] proved the following.

Theorem 13. Under the previous hypotheses, for every initial datum

x02L�+2(
;F0;P;H)

there exists a unique strong adapted càdlàg solution fXtg with

X 2L�([0; T ];V )\L2([0; T ];H) P-a.s.

such that every progressively measurable V-valued version of X satisfies (1) P-a.s.

Note that our assumptions are intentionally not the most general ones, and
exclude e.g. the stochastic p-Laplace equation, p=2, or time-dependent drift.



Non-standard hypothesis on the drift 23/41

Assume also that there exist �4> 0 and C42R such that for all u2V ,

2hA(u); ui�C4¡ �4kA(u)kV � (cone condition):

Remark 14. This condition is satisfied for the 2D NSE and the power law fluid
equations. Unfortunately, it is quite restrictive for semilinear equations with drift
A = A0 + F because it forces the nonlinear perturbation F of the dissipative
principal term A0 to have at most quadratic growth.

For this reason, our result does not cover stochastic Allen-Cahn equations with
cubic nonlinearity.



Non-standard hypothesis on the noise 24/41

Assume that
R
fkzk�1gkG(z)kH

�+2 �(dz)<1, and that fLtg has the cylindrical

representation

Lt=
X
k=1

1

�k
p

eklt
k; t� 0;

where ek2V , k2N form an ONB of H, f�kg2 `1 and fltkg are i.i.d. symmetric
Lévy processes in R with finite second moments.

Moreover, assume that for some kekkV� �k
p

with f�k�kg2 `1 it holds that

k
X
k=1

1

�k
p

eklt
kkV2 �

X
k=1

1

�k�kjltkj2:

If V is a separable Hilbert space, it is sufficient to assume that fkekkV¡1ekg is an
ONB of V .
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Remark 15. If G� 0, and V is a separable Hilbert space, the previous assump-
tions are equivalent to assuming that B 2HS(H;V ).

The symmetry and additional regularity of the Lévy process is needed to prove the
small ball property in V .

Theorem 16. (Barrera, T., arXiv:2412.01381) Under the previous hypotheses,
the semigroup associated to (1) is Markovian and Feller, and satisfies the e-
property and is weak�mean ergodic. The unique invariant probability measure � on
(H;B(H)) admits finite (�+ �)-moments in H. If �=0, m admits �-moments
in V.

The existence and uniqueness of � is proved by the e-property and the lower-bound
technique.



Ergodicity of the 2D NSE 26/41

Theorem 17. Under the hypotheses on the noise, the stochastic 2D NSE with
additive Lévy noise admits a unique invariant measure with finite fourth moments.

In particular, we cover the case of O =T2 and e.g. Z0= f(1; 1)g (2 Fourier
modes), Z0= f(1; 0)g (1 Fourier mode) or Z0= ; (the deterministic case), etc.

We point out that ergodicity and exponential mixing of passive scalars advected the
velocity of the stochastic 2D NSE for less than 4 modes has been proved recently
by Kooperman and Rowan [CR24] for initial data in Hsol;0

5 (T2;R2).

Our result is true for all � > 0 and for initial data in Lsol
2 (O;R2), however, we do

not obtain a convergence rate. We get weak convergence of the time-averages of
the law. Mixing for all � > 0 and degenerate noise is an open problem.

Here, �(u)= 64
�3
kukLsol

4
4 , �2=�c02, where c0 is the inverse Poincaré constant of O.



Ergodicity of the power law fluid equation 27/41

We also get ergodicity for the shear-thickening stochastic incompressible power
law fluid equations with additive Lévy noise (the �oobleck case�).

Theorem 18. Under the hypotheses on the noise, the stochastic power law
fluid equation for p� 2+ d

2
_ 2 with additive Lévy noise admits a unique invariant

measure with finite 2p

2p¡ dth moments.



4 Sketch of the proof 28/41

We first need to verify the e-property.

By a Galerkin approximation, Itô's lemma, and the Burkholder-Davis-Gundy
inequality, we obtain the following a priori esimate for some constant C > 0,
not depending on T > 0, and small enough 
 > 0,

1
2
E

�
sup
0�t�T

kXtkH
�+2

�
+ �1

�+2
4

E

Z
0

T

e
(t¡T )kXtkV� kXtkH
� dt

�E[kx0k�+2e¡
T ] +
C


(1¡ e
(t¡T ))�E[kx0k�+2] +

C


:

For the 2D NSE, these types of estimates are well-known. In particular, applied
for �=0, we obtain the existence of at least one invariant measure by the Krylov-
Bogoliubov theorem.



The e-property 29/41

Recall:

Definition 19. A Feller semigroup fPtg is said to satisfy the e-property if for
every '2Lipb(H), for every x2H, for every "> 0, there exists � > 0 such that

jPt'(x)¡Pt'(y)j<"

for every t� 0 and for every y 2H with kx¡ yk<�.

Naïve proof.

jPt'(x)¡Pt'(y)j �k'kLip2 E[kXt
x¡Xt

ykH2 ]

Note that if A is monotone, we get that

E[kXt
x¡Xt

ykH2 ]=kx¡ ykH2+2E
Z
0

t

hA(Xs
x)¡A(Xs

y);Xs
x¡Xs

yids�kx¡ ykH2 :



Naïve idea: Gronwall lemma 30/41

Note that because we have additive noise, for 0< 
 <�2, by local monotonicity,

kXT
x¡XT

ykH2

=kx¡ ykH2 e¡
T +C2

Z
0

T

e
(t¡T )kXt
x¡Xt

ykH2 ((
 ¡ �2)+ kXt
xkV� kXt

xkH
� )dt

Hence by the Gronwall lemma,

EkXT
x¡XT

ykH2+(�2¡ 
)E

Z
0

T

e
(t¡T )kXt
x¡Xt

ykH2 dt

�kx¡ ykH2 E

�
exp

�
C2

Z
0

T

e
(t¡T )kXt
xkV� kXt

xkH
� dt

��
However, we do not have any control over the mean exponential.



Stochastic Gronwall lemma [AV24] 31/41

Theorem 20. Let s� 0, let � be a stopping time with values in [s;1). Let X;
Y ; f : [s; �)�
! [0;1) be progressively measurable processes such that a.s. X
has increasing and continuous paths, a.s. Y 2Lloc

1 ([s; �)), and a.s. f 2L1(s; �).
Supposet that there exist constants � � 0 and C � 1 such that for all stopping
times s����� �

E[X(�)]+E

Z
�

�

Y (t)dt�C(E[X(�)] + �)+E

�
(X(�)+ �)

Z
�

�

f(t)dt

�
;

Then X(�)+
R
s

�
Y (t)dt is finite a.s. and for every "> 0, R> 0,

P

�
X(�)+

Z
s

�

Y (t)dt� "
�
� 4C

"
e4CR(E[X(0)]+ �)+P

�Z
s

�

f(t)dt�R
�
:

Note. This enables us to dispense with exponential martingales.



Application of the stochastic Gronwall lemma 32/41

Recall for 0< 
 <�2,

sup
0�t�T

kXt
x¡Xt

ykH2

�kx¡ ykH2 +C2 sup
0�t�T

kXt
x¡Xt

ykH2
Z
0

T

e
(t¡T )kXt
xkV� kXt

xkH
� dt:

Now, by the stochastic Gronwall lemma [AV24], and the Markov inequality,

P

�
sup
0�t�T

kXt
x¡Xt

ykH2+(�2¡ 
)

Z
0

T

kXt
x¡Xt

ykH2 dt�
"2

9k'kLip

�

�36
"2
k'kLip2 e4Rkx¡ ykH2+

1
R
E

�
C2

Z
0

T

e
(t¡T )kXt
xkV� kXt

xkH
� dt

�
:



Proof cont'd 33/41

Recall the a priori estimate

�1
�+2
4

E

Z
0

T

e
(t¡T )kXt
xkV� kXt

xkH
� dt�kxk�+2+ C



:

Hence, for fixed x and for any T �0, by choosing suitableR>0 and �>0, recalling
that kx¡ ykH��,

jPt'(x)¡Pt'(y)j �
"
3
+2k'k1P

�
sup
0�t�T

kXt
x¡Xt

ykH2 �
"2

9k'kLip

�

�"
3
+2k'k1

�
36
"2
k'kLip2 e4Rkx¡ ykH2+

1
R
E

�
C2

Z
0

T

e
(t¡T )kXt
xkV� kXt

xkH
� dt

��

�"
3
+2k'k1

�
36
"2
k'kLip2 e4R�2+

4C2
�1(�+2)R

�
kxkH

�+2+
C



��
� ":



Stochastic stability 34/41

Consider the deterministic counterpart to (1),

dut
x=A(ut

x)dt; t > 0; u0
x=x;

and note that by coercivity, for every R> 0,

lim
t!1

sup
kxkH��R

kutxkH=0:

Let us prove that for any T >0, for any ">0, and any K�H bounded, we have

P(kXT
x¡uTx kH2<")> 0;

uniformly for x2K.



The �lower bound� 35/41

To prove this stochastic stability for finite times with positive probability, we
use a pathwise argument to estimate kYtx¡ ut

xkH2 , where Ytx :=Xt
x¡Lt

x is the
solution to the random PDE

dYt=A(Yt+Lt)dt; t > 0; Y0=x:

To control the error terms with positive probability, we need the small ball property
of fLtg in V , that is,

P
�

sup
0�t�T

kLtkV<�
�
> 0:

which we can prove for symmetric Lévy processes in V . For the pathwise argument,
we also need the non-standard assumption that there exist �4>0 and C42R such
that for all u2V ,

2hA(u); ui�C4¡ �4kA(u)kV �:



The �lower bound� cont'd 36/41

We obtain

P
�

sup
0�t�T

kXt
x¡utxkH2<"

�

�P
�

sup
0�t�T

kYtx¡utxkH2<
"
4
; sup
0�t�T

kLtkH2<
"
4

�
> 0:

However, in the estimates for sup0�t�T kYtx¡utxkH2 , we in fact need the stronger
requirement

P
�

sup
0�t�T

kLtkV2<�
�
> 0;

and an application of the stochastic Gronwall lemma.



The �lower bound� cont'd 37/41

Now, for every � > 0, and every z 2K, there exists 
1> 0, and T0> 0 such that

PT1B�(0)(z)=P(kXT0
z kH��)�P

�
kXT0

z ¡uT0z kH�
�
2

�
� 
1> 0:

By a well-know trick used for instance by Es-Sarhir and von Renesse [EvR12], we
may use the Markov property of the semigroup (shifting by T0) to obtain

liminf
T!1

1
T

Z
0

T

Pt1B�(0)(x)dt� liminf
T!1


1
1
T

Z
0

T

Pt1K(x)dt> 0:

Here, we have also used that the coercivity implies for every " > 0 and every
bounded set J , there exists a bounded set K with

inf
x2J

liminf
T!1

1
T

Z
0

T

Pt1K(x)dt> 1¡ ":



Final remarks 38/41

Thus, the conditions of Komorowski, Peszat and Szarek [KPS10] can be verified.

This proves our main result. The moment estimates follow from our a priori esti-
mate and the fact that V �H is a continuous linear embedding.

Theorem 21. (Barrera, T., arXiv:2412.01381) Under the previous hypotheses,
the semigroup associated to (1) is Markovian and Feller, and satisfies the e-
property and is weak�mean ergodic. The unique invariant probability measure � on
(H;B(H)) admits finite (�+ �)-moments in H. If �=0, m admits �-moments
in V.

Remark 22.

� Due to our method, our proof is restricted to locally monotone equations, where
� depends only on one variable and not on both (fully locally monotone).

� The V -regularity and symmetry of the noise are technical assumptions.



Wrap-up and open problems 39/41

� We have proved the ergodicity of locally monotone drift SPDEs with
Wiener noise plus independent symmetric Poisson noise with spatial reg-
ularity in the more regular space V without using exponential martingales.

� This extends the known results for stochastic 2D NSE for all � > 0 by
a new minimal condition on the Fourier modes of the noise and by the
Poisson part. Ergodicity for mildly degenerate Lévy noise is well-known.

� Other examples are the stochastic power law fluid equations for p>
2, the stochastic heat equation, and the stochastic 1D Burgers
equation.

� Semilinear SPDEs like the stochastic Allen-Cahn equation, and fully
locally monotone SPDEs like the stochastic Cahn-Hilliard equation
are not covered by our results, nor is the stochastic p-Laplace equa-
tion.

� Mixing and quantification of mixing times remain an open question in this
general situation.
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