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1 Motivation 3/37

Consider the stochastic incompressible 2D Navier-Stokes equations (NSE) with
additive Wiener noise on a bounded domain O�R2, viscosity � > 0,

dXt= [��Xt +(Xt �r)Xt]dt+B dWt; t > 0;

r�Xt=0; t� 0;

X0=x2Lsol
2 (O;R2) :=H;

with no-slip boundary condition Xt=0 on @O.

By the spectral Galerkin method, if B 2HS(U ;H) and if fWtgt�0 is a cylidrical
Wiener noise modelled on a separable Hilbert space U , there exists a unique
adapted Markovian strong solution

Xx2L2([0; T ]�
;Hsol;0
1 (O;R2)).



Locally monotone drift SPDEs 4/37

The 2D NSE is an example of a locally monotone drift SPDE .

dXt=A(Xt) dt+B dWt; t� 0:

Let V �H�H��V � be a Gelfand triple.

V separable, reflexive Banach space, H separable Hilbert space.

A:V !V � is called monotone if there exists K 2R,

hA(u)¡A(v); u¡ vi�Kku¡ vkH2 ; u; v 2V :

If H =V =R, f :R!R is monotone iff x 7! f(x)¡Kx is non-increasing.

A is called locally monotone in V if there exists �: V !R, locally bounded and
measurable, and K 2R, such that

hA(u)¡A(v); u¡ vi� (K + �(u))ku¡ vkH2 ; u; v 2H:



Further examples 5/37

Further examples of locally monotone drift SPDEs

� Stochastic power-law fluid equations

� Stochastic Allen-Cahn equation

� Stochastic Burgers equation

Non-monotone perturbations of monotone drift SPDEs

� Stochastic p-Laplace equation + perturbation

� Stochastic porous medium-type equations + perturbation

(not covered by our ergodicity result)



Stochastic power law fluids 6/37

Further examples of locally monotone drift SPDEs

� Stochastic power-law fluid equations on O⊂Rd, p2 (1;1),

dXt= [r�S(e(Xt))+ (Xt �r)Xt]dt+B dWt; t > 0;

r�Xt=0; t� 0;

X0=x2Lsol
2 (O;Rd);

where

e(u)i;j :=
1
2
(@iuj+ @jui);

and

S(z) := 2�(1+ jz j)p¡2z:



Stochastic power law fluids 7/37

Further examples of locally monotone drift SPDEs

� Stochastic power-law fluid equations on O⊂Rd, p2 (1;1), d=2; 3.

p> 2 p< 2 p=2
dilatant , or shear-thickening pseudoplastic , or shear-thinning Newtonian, Navier-Stokes equations

oobleck hair gel, blood, whipped cream Examples: water, glycerol, ethanol

(mixture of water and corn-starch) (polymeric molecules) viscous stress / local strain rate

Im age sou rce : Rachel Grosskrueger (CU Boulder) Im ag e sou rce : Shutterstock Im ag e sou rce : TROUT55/Getty Images



Stochastic Allen-Cahn and stochastic Burgers 8/37

Further examples of locally monotone drift SPDEs

� Stochastic Allen-Cahn equation on O⊂Rd, d=1; 2; 3:

dXt= [��Xt+ g(Xt)]dt+B dWt; t > 0;

X0=x2L2(O):

Typically, g(z)= z¡ z3.

� Stochastic Burgers equation on O⊂Rd, d=1; 2; 3:

dXt= [��Xt+ hf(Xt);rXti]dt+B dWt; t > 0;

X0=x2L2(O):

1D stochastic Burgers, d=1, f(z)= z.



Main question 9/37

Existence and uniqueness of solutions to the examples for any finite time horizon
T > 0 have been discussed in Liu, Röckner [LR10].

What about T!1?

Replacing the noise B dW by a deterministic forcing f 2Lsol
2 , the 2D NSE with

no-slip boundary condition is known to have exponential convergence to the
stationary solution [Tem01], when the viscosity is large enough relative to
constants depending only on the domain, the first eigenvalue of the Stokes
operator, and the Lsol

2 -norm of the deterministic forcing f .

Without forcing, the solution has exponential decay to zero.

What about the stochastic case?



2 Invariant measures 10/37

Set PtF (x) :=E[F (Xt
x)], t� 0, F 2Bb(H), x2H and define Pt� by duality

hPt��; F i= hPtF ; �i; t� 0; �2M1(H); F 2Cb(H):

Definition 1. A probability measure �2M1(H) is said to be invariant for fPtg
if Pt��= � for every t� 0.

fPtgt�0 is called Feller if Pt(Cb(H))�Cb(H) for every t� 0.

fPt} is called weak� mean ergodic if for some invariant measure �,

1
T

Z
0

T

Pt
��dt* �; as T!1

for every � 2M1(H) which is equivalent to the uniqueness of �.



Krylov-Bogoliubov theorem 11/37

Proposition 2. (Krylov-Bogoliubov).

If for a Feller semigroup fPtg and some x2H, tn%1, �2M1(H),

1
tn

Z
0

tn

Law(Xs
x)ds* � as n!1

then � is an invariant measure for fPtg.

Remark 3. This method can be used to prove that the stochastic 2D NSE
with additive Gaussian forcing admits an invariant measure by standard a priori
estimates.



Strong Feller property 12/37

Definition 4. A Feller semigroup fPtg is said to have the strong Feller property if

Pt(Bb(H))�Cb(H) for every t > 0:

A Feller semigroup fPtg is said to be irreducible if for every t > 0 and for every
x2H and for every non-empty open set O�H ,

Pt1O(x)> 0:

Theorem 5. If fPtg is strong Feller and irreducible, it admits a unique invariant
measure � such that for every x2H

jjPt��x¡ �kTV!0 as t!1:



Timeline (some highlights) 13/37

� In 1995, Flandoli and Maslowski [FM95] proved the strong Feller property and
irreducibility of the stochastic 2D NSE with non-degenerate Gaussian noise.

� In 2001�2002, the (exponential) ergodicity of the stochastic 2D NSE with
either non-degenerate forcing or large viscosity � was proved by Bricmont,
Kupiainen, and Lefevere [BKL02]; E, Mattingly, and Sinai [EMS01]; Kuksin
and Shirikyan [KS01]; Mattingly [Mat02]; . . .

� In 2002, the general well-posedness theory for the stochastic 2D NSE was
discussed by Menaldi and Sritharan [MS02].

� In 2006, Hairer and Mattingly [HM06] provided a minimal non-degeneracy
condition of the noise for the asymptotic strong Feller property and weak
irreducibility with a minimal number of four forced modes.

� And many others . . .

Recently, there has been a lot of progess for multiplicative noise, Lévy noise,
pure jump noise, and coupling techniques.



Mild degeneracy 14/37

Denote by Pn the Galerkin projection on the first n Fourier modes. If the noise
coefficient B is mildly degenerate, that is, B 2HS(H) and for every � > 0, there
exists N =N(�;kBkHS(H)) such that, if

Rg(B)�Pn(H);

for some n�N , then the stochastic 2D NSE admits a unique invariant measure,
and the Foias-Prodi estimate holds in the stochastic case for some C =C(x; y;
B;O; �)> 0, and �= �(B;O; �)> 0 such that

E[kXt
x¡Xt

ykH2 ]�Ce¡�t

see Glatt-Holtz, Mattingly, Richards [GMR17]. Thus, we get exponential mixing.
The estimates rely on the properties of the exponential martingale.



The e-property 15/37

Definition 6. A Feller semigroup fPtg is said to satisfy the e-property if for every
'2Lipb(H), for every x2H, for every "> 0, there exists � > 0 such that

jPt'(x)¡Pt'(y)j<"

for every t� 0 and for every y 2H with kx¡ yk<�.

This type of uniform equicontinuity for bounded Lipschitz functions could be
viewed a coupling condition at infinity.

It has been conjectured by Szarek and Worm [SW12] that

�It seems that all known examples of Markov processes with the
asymptotic strong Feller property satisfy the e-property as well.�

Jaroszewska constructed a counter-example in 2013 in an unpublished preprint.



The �lower bound technique� 16/37

Originally developed by Lasota and Szarek [LS06], the �lower bound technique�
can be described as follows in the work of Komorowski, Peszat and Szarek [KPS10].

Theorem 7. Assume that fPtg is Feller and has the e-property. Assume that
there exists z 2H such that for every bounded set J �H and every � > 0

inf
x2J

liminf
T!1

1
T

Z
0

T

Pt1B(z;�)(x)dt> 0:

Suppose further that for every ">0 and every x2H there exists a bounded Borel
set K �H such that

liminf
T!1

1
T

Z
0

T

Pt1K(x)dt> 1¡ ":

Then there exists a unique invariant probability measure � for fPtg, and fPtg is
weak� mean ergodic.



Generalized coupling techniques 17/37

The following conditions (more generally for couplings) have been inspired by
Butkovsky, Kulik and Scheutzow [BKS20] (adapted to our situation). For a lower
semi-continuous function U :H! [0;1) and a measurable function S:H! [0;
1],

kXt
x¡Xt

ykH2 �kx¡ ykH2 exp
�
¡�t+�

Z
0

t

S(Xs
x)ds

�
; t� 0;

U(Xt
x)+ �

Z
0

t

S(Xs
x)ds�U(x)+ bt+Mt; t� 0;

where �> 0 and b� 0, such that

� >
�b
�
;

and M is a continuous local martingale with M0=0 and for b1; b2� 0,

dhM it� b1S(Xt
x)dt+ b2dt; t� 0:



3 Main result 18/37

Consider

(1) dXt=A(Xt) dt+BdWt; t > 0; X0=x0;

where fBWtg is as before, i.e., fWtg is a cylindrical Wiener process on a
separable Hilbert space U and B 2HS(U ;H).



Hypotheses on the drift 19/37

The drift A: V ! V � is hemicontinuous (i.e., weakly continuous along rays) and
for �� 2, �1> 0, u2V ,

2hA(u); ui�¡�1kukV� (coercivity)

and for �2> 0, C2� 0, u; v 2V ,

2hA(u)¡A(v); u¡ vi� (¡�2+ �(u))ku¡ vkH2 ; (localmonotonicity)

where for � � 0

0� �(u)�C2kukV� kukH
� u2V :

Moreover, for K > 0, u2V ,

kA(u)kV �
�

�¡1�K(1+kukV� )(1+kukH
� ) (boundedness):



Existence and uniqueness of solutions 20/37

Liu and Röckner (for Wiener noise) [LR10] and Brzezniak, Liu, and Zhu (for Lévy
noise) [BLZ14] proved the following.

Theorem 8. Under the previous hypotheses, for every initial datum

x02L�+2(
;F0;P;H)

there exists a unique strong adapted càdlàg solution fXtg with

X 2L�([0; T ];V )\L2([0; T ];H) P-a.s.

such that every progressively measurable V-valued version of X satisfies (1) P-a.s.

Note that our assumptions are intentionally not the most general ones, and
exclude e.g. the stochastic p-Laplace equation, p=2, or time-dependent drift.



Non-standard hypothesis on the drift 21/37

Assume also that there exist �4> 0 and C42R such that for all u2V ,

2hA(u); ui�C4¡ �4kA(u)kV � (cone condition):

Remark 9. This condition is satisfied for the 2D NSE and the power law fluid
equations. Unfortunately, it is quite restrictive for semilinear equations with drift
A = A0 + F because it forces the nonlinear perturbation F of the dissipative
principal term A0 to have at most quadratic growth.

For this reason, our result does not cover stochastic Allen-Cahn equations with
cubic nonlinearity.



Quantitative conditions for ergodicity and mixing 22/37

Assume that the noise is spatially regular: B 2HS(U ;V ) (if V is a Hilbert space,
otherwise assume a small ball property in V ).

To control the exponential martingale, we need to assume that

�� 2; 0� � ��¡ 2;

and a relation between kBkHS(U ;H)2 �0, �1; �2> 0, C2� 0, and c0> 0 such that

kvkV�c0kvkH ; v 2V ;

as follows: If �=0, �=2, we assume that there exists 
 2 [0; �2]

kBkHS(U ;H)2 � �1
C2
(�2¡ 
)^ 1

4
�1c0

2

If �> 2, or � > 0, we assume an additional condition of similar type.



The constants 23/37

For the 2D NSE, we have that �=2, �=0, �1=2�, �2= �c0
2, C2=

4

�
,

see [BKS20]. Here, c0 is the inverse of the Poincaré constant of the domainO�R2.
Note that in [BKS20], it is assumed also that there exists n2N with

Rg(B)�Pn(H);

which we do not have to assume here.

For the 1D Burgers equation, we have that there exists " 2 (0; 2�c02), and
C =C("; c0;O)> 0, such that:

�=2, �=0, �1=2�, �2=2�c0
2¡ ", C2=C.

Certainly, the stochastic heat equation is also covered with:

�=2, �=0, �1=2�, �2=2�c0
2, C2=0.



Main results 24/37

Theorem 10. (Barrera, T., 2025+) Under the previous hypotheses, the semi-
group associated to (1) is Markovian and Feller, and satisfies the e-property and is
weak� mean ergodic. The unique invariant probability measure � on (H;B(H))
admits finite (�+ �)-moments in H. If �=0, � admits �-moments in V.

The existence and uniqueness of � is proved by the e-property and the lower-bound
technique.

Let � x(") := infft�0 : W2(Law(Xt
x); �)�"g be the Markovian mixing time

with prescribed error "> 0, here W2 denotes the Wasserstein-2-distance.

Theorem 11. (Barrera, T., 2025+) Under the previous hypotheses, if 
 > 0,
there exists a constant K � 0, such that we obtain the following upper bound:

� x(")� 2



"
C2kxkH

�+2

4�1(�+2)
+ log

�
kxkH+

�
K

2c0
��1(�+2)

�
1/(�+�)

�
+ log

�
1
"

�#
:



Mixing time for stochastic 2D NSE 25/37

Theorem 12. (Barrera, T., 2025+) Assume that there exists 
 2 (0; �c02], such
that

kBkHS(U ;H)2 � 1
8
�2(�c0

2¡ 
)^ 1
2
�c0

2;

then we obtain the following upper bound for the "-mixing time

� x(")� 2



�
2kxkH2
�2

+ log
�
kxkH+

kBkHS(U ;H)
�

p
c0

�
+ log

�
1
"

��

for the stochastic 2D Navier-Stokes equations.



4 Sketch of the proof 26/37

We first need to verify the e-property.

By a Galerkin approximation and Itô's lemma, we obtain the following pathwise a
priori esimate for some constant C > 0, not depending on T > 0,

kXt
xkH

�+2+�1
�+2
4

Z
0

T

kXtkV� kXtkH
� dt

�kxk�+2+CT +MT ;

where t 7!Mt is a local martingale with M0 = 0. The absolutely continuous
terms on the RHS have been compensated with the 2nd term on the LHS by
our hypotheses and Young's inequality.

For the 2D NSE, these types of estimates are well-known. In particular, applied
for �=0, we obtain the existence of at least one invariant measure by the Krylov-
Bogoliubov theorem.



The e-property 27/37

Recall:

Definition 13. A Feller semigroup fPtg is said to satisfy the e-property if for
every '2Lipb(H), for every x2H, for every "> 0, there exists � > 0 such that

jPt'(x)¡Pt'(y)j<"

for every t� 0 and for every y 2H with kx¡ yk<�.

Naïve proof.

jPt'(x)¡Pt'(y)j �k'kLip2 E[kXt
x¡Xt

ykH2 ]

Note that if A is monotone, we get that

E[kXt
x¡Xt

ykH2 ]=kx¡ ykH2+2E
Z
0

t

hA(Xs
x)¡A(Xs

y);Xs
x¡Xs

yids�kx¡ ykH2 :



Gronwall's lemma 28/37

Note that because we have additive noise, for 0< 
 <�2, by local monotonicity,

d
dt
kXt

x¡Xt
ykH2

�kXt
x¡Xt

ykH2 (¡�2+C2kXt
xkV� kXt

xkH
� ); t > 0:

Hence by Gronwall's lemma,

EkXT
x¡XT

ykH2

�kx¡ ykH2 E

�
exp

�
¡�2T +C2

Z
0

T

kXt
xkV� kXt

xkH
� dt

��
; T � 0:

We are left with controlling the exponential moments, which is not obvious.



The exponential martingale 29/37

By our assumption �� � ¡ 2, we can even obtain for another constant C~> 0,

kXt
xkH

�+2+�1
�+2
4

Z
0

T

kXtkV� kXtkH
� dt

�kxk�+2+C~T +MT ¡
1
2
hM iT :

Now,

E

�
exp

�
MT ¡

1
2
hM iT

��
=1:

Hence, for the e-property, we just need

�2�
4C2

�1(�+2)
C~ ;

which follows from our hypotheses.



Stochastic stability 30/37

Consider the deterministic counterpart to (1),

dut
x=A(ut

x)dt; t > 0; u0
x=x;

and note that by coercivity, for every R> 0,

lim
t!1

sup
kxkH�R

kutxkH=0:

Let us prove that for any T >0, for any ">0, and any K�H bounded, we have

P(kXT
x¡uTx kH2<")> 0;

uniformly for x2K.



The �lower bound� 31/37

To prove this stochastic stability for finite times with positive probability, we
use a pathwise argument to estimate kYtx¡ ut

xkH2 , where Ytx :=Xt
x¡Lt

x is the
solution to the random PDE

dYt=A(Yt+Lt)dt; t > 0; Y0=x:

To control the error terms with positive probability, we need the small ball property
of fLtg in V , that is,

P
�

sup
0�t�T

kLtkV<�
�
> 0:

which we can prove for symmetric Lévy processes in V . For the pathwise argument,
we also need the non-standard assumption that there exist �4>0 and C42R such
that for all u2V ,

2hA(u); ui�C4¡ �4kA(u)kV �:



The �lower bound� cont'd 32/37

We obtain

P
�

sup
0�t�T

kXt
x¡utxkH2<"

�

�P
�

sup
0�t�T

kYtx¡utxkH2<
"
4
; sup
0�t�T

kLtkH2<
"
4

�
> 0:

However, in the estimates for sup0�t�T kYtx¡utxkH2 , we in fact need the stronger
requirement

P
�

sup
0�t�T

kLtkV2<�
�
> 0;

and an application of the stochastic Gronwall lemma by Sarah Geiss [Gei24] (see
also von Renesse and Scheutzow [vRS10]).



The �lower bound� cont'd 33/37

Now, for every � > 0, and every z 2K, there exists 
1> 0, and T0> 0 such that

PT1B�(0)(z)=P(kXT0
z kH��)�P

�
kXT0

z ¡uT0z kH�
�
2

�
� 
1> 0:

By a well-know trick used for instance by Es-Sarhir and von Renesse [EvR12], we
may use the Markov property of the semigroup (shifting by T0) to obtain

liminf
T!1

1
T

Z
0

T

Pt1B�(0)(x)dt� liminf
T!1


1
1
T

Z
0

T

Pt1K(x)dt> 0:

Here, we have also used that the coercivity implies for every " > 0 and every
bounded set J , there exists a bounded set K with

inf
x2J

liminf
T!1

1
T

Z
0

T

Pt1K(x)dt> 1¡ ":



Final remarks 34/37

Thus, the conditions of Komorowski, Peszat and Szarek [KPS10] can be verified.

This proves our main result. The moment estimates follow from our a priori esti-
mate and the fact that V �H is a continuous linear embedding.

Theorem 14. (Barrera, T.) Under the previous hypotheses, the semigroup asso-
ciated to (1) is Markovian and Feller, and satisfies the e-property and is weak�

mean ergodic. The unique invariant probability measure � on (H;B(H)) admits
finite (�+ �)-moments in H. If �=0, m admits �-moments in V.

Remark 15.

� Due to our method, our proof is restricted to locally monotone equations, where
� depends only on one variable and not on both (fully locally monotone).

� The V -regularity and symmetry of the noise are technical assumptions.



Wrap-up and open problems 35/37

� We have proved the ergodicity of locally monotone drift SPDEs with
Wiener noise plus independent small-jump symmetric Poisson noise with
spatial regularity in the more regular space V under quantitative condi-
tions with degenerate noise. The embedding V �H does not need to
be compact.

� Further examples are the stochastic power law fluid equations for
p> 2, the stochastic heat equation, and the stochastic 1D Burgers
equation.

� Semilinear SPDEs like the stochastic Allen-Cahn equation, and fully
locally monotone SPDEs like the stochastic Cahn-Hilliard equation
are not covered by our results, nor is the stochastic p-Laplace equa-
tion.
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Thank you for your attention!
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