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Con5|der the stochastlc |ncompreSS|b|e 2D Nawer—Stokes equatlons (NSE) with
addltlve Wlener noise on a bounded domaln OCIR2 V|sc051ty V> 0,

':dXt [I/AXt+(Xt V)Xt]dt+BdM/;, t>0, >
v Xt—O tzo,”,-"
XO_CE € LSOI(O; RZ) = Ha

with no-slip boundary condition X; =0 on 00O.

By the spectral Galerkin method, if B € HS‘(U H) and if {W;};>¢ is a cylidrical
Wiener noise modelled on a separable Hilbert space U, there exists a unique
adapted Markovian strong solution

X7 e L2([0,T] x Q; HL, o(0; R?)).



Loc-ﬂallymonOtQhedrvift.SPDES . T

The 2D NSE is an example of a /oca//y monotone dr/ft SPDE

[et b & F = H* & v be a Gelfand trlple

V' separable, reflexwe Banach space H separable Hllbert space.

A: V—> V* -is called monotone if there exists K € R,
(Alw) = Alw)u—vy = Kflu-—ullg,  u,vel

f H=V =R, f: R— R is monotone iff :tr—>-f(a:) — Kx is non-increasing.

A is called locally monotone in V' if there exists p: V — IR, locally bounded and
measurable, and K € IR, such that

(A(u) — A(w),u—v) < (K + p(u))Hu —wllg, w,veH.
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Further examples of Iocally monotone drlft SPDEs

Stochastlc power—law flu;d equat|on5

Stochastlc Allen Cahn equatlon
Stochastlc Burgers equatlon _’

Non- monotone perturbatlons of monotone drlft SPDEs

Stochastlc p—LapIa_ce equation + perturbatlon

Stochastic porous medium-type equations + perturbation

(not covered by our ergodicity ”re'snlt) |



_ Stochastic power law fluids
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Further examples of Iocally monotone drlft SPDEs

. Stochastlc power—law quud equat|ons on (’)CRd p E (1 oo)

ax=[v. s<‘< X))+ (X v>xt]dt+3dwt, t>o,’

'V--Xt: y tZO,

Ni— e LSOI(O; RY),
where |
= ol o B
e(w)i,j:= 5 (O + Ouy),
and |

ol | + [z’)p_Q



StOCh aStIC . ,pOWé‘HaWﬂ‘Uid‘s e - o

Further examiples ’,O”f Iocally monotone drlft SPDEs

pE(l oo) d 23

3 Stochastlc power—law qusd equatlons on (9 le_-

p>a i1fa , mpdy e Gial O
dilatant, or shear—thlcken/ng . pseudop/ast/c or shear—th/nnlng Newtonian, Navier-Stokes equations
oobleck e ; Aha>|r gel, bvlood ‘whipped cream 3 ‘Examples water, glycerol, etha_nol

(mixture of water and corn-starch) ~ (polymeric molecules) viscous stress o local strain rate

— ‘
N /
o~ ™

Image source: Rachel Grosskrueger (CU Boolder) R ; Im‘age source: Shutterstock Image source: TROUT55/Getty Images



_Stochastic AIIen—Cahn end,stochas-t‘ic Burgers
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Further examples of Iocally monotone drlft SPDEs

e Stochastlc Allen Cahn equatlon on (’)C]Rd d 1 2 3
| . “ - d_‘Xt ‘ [VAXt—i— g(Xt)] dt+ B dW}, | »O, |
pmcl¥O)
Typﬂice.lly,,"g:‘(z) :'}; . |
e Stochastic Burgers equation on OCR%Z, d= 1123
AXi— [VAX, LN G A BV 50
- Xo=z € L¥O).

1D stochastic Burgers, d=1, f(z)=



 Mainguestion. = . o

| Ex1stence and unlqueness of squtlons to the examples for any f|n|te B LT
T =1 have been discussed in L|u Réckner [LRlO] ;

What about T—> oo? :‘:'7' .

Replacing the noise B dW by a determlnlstlc forcmg f E LSOI, the 2D NSE with
no-slip boundary condltlon is known to have exponentlal convergence to the
stationary solution [Tem01], when the viscosity is large enough relative to
constants depending only on the domain, the first eigenvalue of the Stokes
operator, and the L2 -norm of the deterministic forcing f.

Without forcing, the solution has expo,nential decay to zero.

What about the stochastic case?
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Set PtF( ) v E[F(Xt )] t>0 FEBb( ) :EGH and deflne Pt by duality

: <Pt,LLaF> '<PtF >7 t>0 ,LLEM( ) FECb( )

Deflnltlon 1 A probab///ty measure ,u = /\/ll( i is- sa/d to be invariant for {P;}
i P= ,uforeveryt>() = T

{Pt}t>0 is called Feller if Pt(Cb( )) C Cy(H) for every t > 0.

{P,} is called weak* mean ergodic if for some invariant measure [,

1t v
T/ Ptydt ,u, asy 1I'— 00
0 ;

for every v € M(H) which is equivalent to the u'niqu‘eness of 1.



Krylov-Bogoliubov theorem  ws

Proposntlon 2 (Kry/ov—Bogo/Iubov) . .
If for a Fe//er sem/group {Pt} and some T = H tn / 0, M = Ml( ),

' tl/ Law(Xf)dSA/J Tl
mJo o o
then ,u is an invariant measure for {P.}.

Remark 3. This method can be used to prove that the stochastic 2D NSE
with additive Gaussian forcing admits an invariant measure by standard a priori
estimates. '



Def:'ih‘it'ion'_v4‘. A Fe//ersem/group {Pt} i"s‘*said«y,_\to have the strong Feller property if

 PAB(H)) C Cy(H) forevery ¢>0.
A Feller sem_;i,g(o’u,p {Pt} is said to be irreducible if for ﬁ‘»e've'ry t >0 and for every
x € H and for every non-empty open set O C H, |

Pt]]_O(ZC) > 0.

Theorem 5. If {P,} is strong Feller and irreducible, it admits a unique invariant
measure (i such that for every x € H

|‘Pt*5:1;_,LLHTV_>O as =00,



TiAmeIine(some highlights) o T

In 1995 FIandoll and Maslowsk| [FI\/I95] proved the strong Feller property and
wreducrbrlrty of the stochastlc 2D NSE with non- degenerate Gau55|an noise.

In 2001 2002 ‘the (exponentlal) ergod|C|ty of the stochastic 2D NSE with
either non-degenerate forcmg or large V|scosrty v was proved by Bricmont,
Kupiainen, and Lefevere [BKL02]; E, Mattlngly and Sinai [EMSO01]; Kuksin
and Shlrlkyan [KSO01]; Mattingly [Mat02]

In 2002 the general well- posedness theory for the stochastlc 2D NSE was

| dlscussed by Menaldi and Sritharan [MS02].

In 2006, Hairer and Mattingly [HMO6] provided a minimal non-degeneracy
condition of the noise for the asymptotic strong Feller property and weak
irreducibility with a minimal number of four forced modes.

And many others ...

Recently, there has been a lot of progess for multiplicative noise, Lévy noise,
pure jump noise, and coupling techniques.
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Denote by P the Galerkm prOJectlon on the first n Fourler modes. If the noise
coefficient B is mildly degenerate, that is, B = HS( l) and for every v >0, there
exists N = N( ||I||HS(H)) such that |f B

- Rg(B)DP i

for some nZNthen the stoch'aStic 2D NSE admits a :unique invariant measure,
and the Foias-Prodi estimate holds in the stochastic case for some C' = C(z, y,
B,0,v)>0, and 0 =0(B,O,v) >0 such that

Efllxe - X5 < Ce

see Glatt-Holtz, Mattingly, Richards [GMR17]. Thus, we get exponential mixing.
The estimates rely on the properties of the exponential martingale.



| TheEpepery == - -

Deflmtlon 6 A Fel/er sem/group {Pt} is said to satlsfy the e-property if for every
Y E Llpb(H ) for every Te H for every e >0, there exists 5 > 0 such that

1Bwle) - Pty <e

for every ¢ ZOandfor every y € H with e —y|| <6 |

This ‘type of uniform equicontinuity for bounded Lipschitz functions could be
viewed a coupling condition at infinity. |

It has been conjectured by Szarek and Worm [SW12] that

‘It seems that all known eXampIeS of Markov processes with the
asymptotic strong Feller property satisfy the e-property as well.”

Jaroszewska constructed a counter-example in 2013 in an unpublished preprint.



The‘,‘lOWer _bOju,nd technique”' S

Orlgmally developed by Lasota and Szarek [LSO6] the ° Iower bound technique”
can be descrlbed as follows in the Work of Komorowsk| Peszat and Szarek [KPS10].

Theorem ’ 7.’ "A§s'ume th’a’tv’{Pt} Is 'Fe//ervand hasthe e—prOperty. Assume that
there exists z € H such that for every bounded set .J C H and every § > (

inf 11m1nfl/ Pp.s(x)dt >0.

reJ T—oo T

Suppose further that for every € >0 and every x € H there exists a bounded Borel
set K C H such that

T—>OO T

| . |
liminf — 1 / Blpl(r)dt>1—¢.

Then there exists a unique invariant probab///ty measure (i for {P;}, and {P;} is
weak* mean ergodic.



Gene‘r'all,‘iZGd‘ Co,u,pl.ing vtechniques' .

The followmg condrtlons (more generally for coupllngs) have been inspired by
Butkovsky Kullk and Scheutzow [BKS20] (adapted to our situation). For a lower
semi- contlnuous functlon U H—> [0, 00) and a measurable function S: H — [0,

IXF - XPE<|z — yll& eXp(—CtJrH/S(Xé”)dS), t >0,
5 U(th)—l—,u/ S(XHds<U(x)+bt+ M, t>0,
o Jo

Where (>0 and b >0, such that

and M is a continuous local ‘martingale with My=0 and for by, b, >0,

MY, <biS(XE)dt F badt, 5> 0
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Consider " | s 0t
(1)dX A(Xa dt+ B, £50, K=,

il {BW;} is as before e, {W;} is a cylmdrlcal Wlener process on a
separable Hllbert space U and B EHS(U H) |



HYPOthese;S}Qn“"the drift- o SRR

The drlft A V—> V* is hem/contlnuous (| e, weakly contlnuous along rays) and
fora>2 51>O uEV ‘ e . ‘

L A=t (e’o‘emmyj |
and for 0, >0, C? ZO s v eV i S5
' 2<A(U) _ A(U),u _‘U> < (=02 + P(u))Hu —vll%, | ‘»(vlo'cal mo’notonicity)‘
where for 5 >0 ‘ |
0< p(u) < Collullflullf weV.

Moreover, for K >0, uelV,

(0%

| A(w) |5 " <K (1 4+||ul|§)(1 +Hu\|§) (boundedness).




Existence -and un i.q,ueness of | solutions | 20/37

Liu and Rockner (for Wlener nOIse) [LRlO] and Brzeznlak L|u and Zhu (for Lévy
noise) [BLZl4] proved the followmg e -

Theorern 8 "Under the previous hypoth'eses, foiryevery vin'i'tial datum
zo € LA+, Fo. P H) .
the‘re'”exisis..a unidue strong adapted cadlag solution { X} ‘With
X e L¥([0,T]; V) NI([0,T}; H) P-as
such that every progressively measurab/e Vvalued version of X satisfies (1) P-a.s.

Note that our assumptions are intentionally not the most general ones, and
exclude e.g. the stochastic p-Laplace equation, p # 2, or time-dependent drift.



Non-standard hypothesis on the drift =~

Assume also that there eX|st54> 0 and C.cR such that for all ueV/,

 2A(w)w) Ci— bl A@)lv-  (conecondition).
Remark 9. Thistondi_tioh iS.‘é_atisffi'e'd for the 2DNSEand the power law fluid
equations. -Qn,fprtuna-vtely, it is quite restrictive for semi[inear equations with drift
A= Ay + F because it forces the nonlinear perturbation F' of the dissipative
principal term Ay to have at most quadratic growth.

For this reason, our result does not cover stochastic Allen-Cahn equations with
cubic nonlinearity.



QuantitativeCQn?d‘iti"o,nszrergodicityand mixing 2/

Assume that the noise is spatlally regular B - HS(U V) (|f V is a Hilbert space,
otherW|se assume a smaII ba|| property in V) e

To control the exponent|a| martlngale we need to assume that |

L
and a _relativcf_")";rrh‘hefti\/veen “|BH%{S(U,H)ZO, 81, 02>0, Cy>0, and ¢ > 0 such that
lvllv=collvlla, veV,

as follows: If =0, a=2, we assume that there exists v € |0, 02

' 5 1
1B HHS(UH)<71(52— )/\151(38

It a>2, or >0, we assume an additional condition of similar type.
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For the 2D NSE we have thata 2 ﬁ O 51—2V 52—V(:0 Cg—

see [BKS20] Here cois the inverse ofthe Pomcare constant ofthe domaln OCR*
Note that in [BKSZO] it is assumed also that there eX|sts n € N with

which .wedo not have to assume here.

For the 1D Burgers equation, we have that there exists ¢ € (0, 2vc), and
C'=C(e,cy, O) >0, such that:

a=2 =0 01=20.0 iz ngC
Certainly, the stochastic heat equation is also covered with:

a=2 =000, €51
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Theorem 10. ( Barrera T 2025+) Under the | prewous hypotheses the semi-
group assoc1ated to ( 1)is Markowan and Feller, and satisfies the e-property and is
weak* mean ergodic. The unique invariant probabl//ty measure (1 on (H,B(H))
admits f/n/te (a & 0) moments in H lfﬁ_ () 4 admlts -moments in V

The existence and unlqueness of H IS proved by the e—property and the Iower—bound
technlque o

Let T Bl ) —mf{t >0: Wh(Law(X{), i) <e} be the Markovian mixing time
with prescribed error € > 0, here W, denotes the Wasserstein-2-distance.

Theorem 11. (Barrera, T., 2025+) Under the previous hypotheses, if v > 0,
there exists a constant I >0, such that we obtain the following upper bound:

o Gollz|IBF2 o N ;
3 T.(8+ 2>“()g(”x““(zcaal(mz)) >+1°g<2>'

(B <




Mixing t|me for ;S_tQthastic e .

,Theorem 12 ( Barrera T 2025—/— ) Assume that there ex:sts 7 € (O vcg], such
that = - e et ,

| f~.,f;,, rll i - _7?te;1a._
1B H%{S(U,H) S__sz(.VCcQ). v 7)/\ 5:”?3 .

then we obta/n "'vtﬁie_,»rfOIIOW/'ng upper bound for the e—miXing time

2 2||33||H “BHHS U,H) 1
T < J i | it
(€) 7[ V2 (HxH VVCo c €

for the stochastic 2D Navier-Stokes equations. |
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We flrst need to verlfy the e—property

By a Galerkln apprOXImatlon and 1to's |emma we obtaln the followmg pathwise a
priori eS|mate for some constant ¢ - 0, not dependlng on T >0,

it / HXtHvIlXtHHdt

0

||X;v\|5+2+51

SltxHB”JrCTwLMT,

where ¢ — M; is a local martingale with My = 0. The absolutely continuous
terms on the RHS have been compensated with the 2nd term on the LHS by
our hypotheses and Young's inequality.

For the 2D NSE, these types of estirnavtes are well-known. In particular, applied

for 3 =0, we obtain the existence of at least one invariant measure by the Krylov-
Bogoliubov theorem. |



. PEameeery = o

ReCaII' -

Deflmtlon 13 A Fel/er sem/group {Pt} is sa/d to sat/sfy the e—property it for
every p € Llpb(H ) for every x € H, for every & > O there exists & >0 such that

Puola) ~ Pol)l <& .

for every t 2 0 and for every y € H s |l —y||<d. -
Naive proof. , |
|Prp(x) = Prp(y)| <[l et Bl X — X7[|7]

Note that if A is monotone, we get that

E[|| X7 — X¢ ||#)=llz - y”l%l—l—Q]E/ (A AR R XE — X Vds <[z —y |7
/
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Notf_e_ th_ét becausewehave addltlve no|se for 0 <~ < 03, by local monotonicity,
S i B
- SIXE - XPE(=0:+ Col| XEIRIIXENR), >0,
Hence by Gronwall’s lemma,
E|| Xf - X7\

<l ol Bl exo{ - 4G [ xR Xt )|, 20

We are left with controlling the exponential moments, which is not obvious.



The '-HeXpo'nent,iaI ~ martinga—le B oy
By our assumptlon a > 6 2 we can even obtaln for another constant €0

||Xt ||ﬁ+2+515 +2

/ <|Xt||v||Xtqut

- <|{x|l5+2+CT+MT_§<M_>PT.'

Now |
' E{exp(MT—%UW)T)] ==l
Hence, for the e-property, we just need

| Sl
09 > ¢
& 51(5%2) ,

which follows from our hypotheses.
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Consider the determin istic »»c&ujhterp’art('to s
© dup=Addt, >0, ub=z, -

and note that 'b'y" coekcivity, forfeVery_R} O

lim sup |Juf||z=0.
b =R .

Let us prove that for any’T> 0, for any ¢ >0, and any K C H bounded, we have
P(|| XF - up|lf<e) >0,

uniformly for x € K.



To prove th|s stochastlc stablllty for fmlte times with p05|t|ve probablllty, we
T pathW|se argument to estlmate ||Y; —-ut||H, Where Y; . Xt — L{ is the
solution to the random PDE | . . 5

To control the error terms with p05|t|ve probability, we need the small ball property
of {Lt} in V, that is, ‘ |

1z>< i HLt||V<5> > 0.

Ot <1

which we can prove for symmetric Lévy processes in V. For the pathwise argument,
we also need the non-standard assumption that there exist 4, >0 and C; € R such
that for all u €V, '

2 A(u), u) < Cy— &4l Ay




The“lower bOUnd” Cont’d T . o

We obtain o

- IP( Sup HXt —Ut”H<€) ‘
. s, 8
| ZP( sup ||V _‘utHH<_ sup HLt”H<4)>O-

0<t<T | 4’ o<t<r

#, we in fact need the stronger

However, in e estimates for Supo<t<THY,} — uf|
requirement '

P( s lEdi<s) >0,

O<tLR =

and an application of the stochastic Gronwall lemma by Sarah Geiss [Gei24] (see
also von Renesse and Scheutzow [vRS10]).



The ‘lower bound" cont'd=~ . s

Novy, ':for e\/er:y, 5>Oand every z EK i -t’he‘re exists 71 > Oand TO > () such that
PT1135<0>( 7= <|~XT0||H<5> > zP( HXTO . uTOHH<§) > 7150,

By a well- know trlck used for mstance by Es- Sarhlr and von Renesse [EVR12] we
may use the Markov property of the semlgroup (shlftlng by 1p) to obtain

l;rglorcl)f 7{/ Pt]135 (@ )dt>1¥210r<1)f71;/0 Plg(x)dt > 0.
Here, we have also used that the coercivity implies for every € >0 and every
bounded set .J, there exists a bounded set /' with

alzrelf,] 1¥210r<l>fT/ Pt]lK(a;)‘:dt >T—&



_ _,ATF.i'naI,remarks e o

Thus the COﬂdItIOﬂS of Komorowskl Peszat and Szarek [KPSlO] can be verified.

This proves our mam result The moment estlmates follow from our a priori esti-
mate and the fact that V C H Is a contmuous hnear embeddlng

Theorem 14. ( Barr_era, T.) ~Under{_the previous hypo‘these_s, the semigroup asso-
ciated to (1) is Markovian and Feller, and satisfies the e-property and is weak*
mean ergodic. The unique invariant probability measure 11 on (H,B(H)) admits
finite (o + 3)-moments in H. If 3=0, u admits a-moments in V.

Remark 15.

e Due to our method, our proof is restricted to locally monotone equations, where
p depends only on one variable and not on both (fully locally monotone).

e The V-regularity and symmetry of the noise are technical assumptions.



_W_FanUfPs and- j_QPeinvproblems .

. We have proved the ergodmty of |oca||y monotone drift SPDEs with
~ Wiener noise pIus mdependent smaII—Jump symmetrlc Poisson noise with
"spatlal regularlty in the more regular space 'V under quantitative condi-

tions with degenerate noise. The embeddlng V C H does not need to
be compact | e ~ |

o Further examples are the stochastlc power Iaw fluud equations for

= 0 3 the stochastic heat equatlon and the stochastlc 1D Burgers
equatlon

e Semilinear SPDEs like the stochastic Allen-Cahn equation, and fully
locally monotone SPDEs like the stochastic Cahn-Hilliard equation

are not covered by our results nor is the stochastic p-Laplace equa-
tion.
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